首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF), a mitogenic polypeptide hormone, stimulates the phosphorylation of certain endogenous proteins in membrane preparations derived from A431 cells, a human tumor cell line. Membrane vesicles prepared from A431 cells were reacted with 5'-p-fluorosulfonylbenzoyl adenosine (5'-p-FSO2BzAdo). Reaction of the vesicles with 5'-p-FSO2BzAdo results in a time-dependent inhibition of EGF-stimulable protein kinase activity which parallels an increase in incorporation into the vesicles of the 5'-p-sulfonylbenzoyl-[8-14C]adenosine moiety from 5'-p-FSO2Bz[14C]Ado. The primary bands labeled have Mr = 170,000 and 150,000. Labeling of these bands by 5'-p-FSO2Bz[14C]Ado is inhibited by incubation of the membrane vesicles with adenyl-5'-yl imidodiphosphate, an ATP analog. Inactivation of the kinase with N-ethylmaleimide or by heating results in a sharply decreased labeling of the proteins with Mr = 170,000 and 150,000. Proteins of these molecular weights have previously been identified in these cells as the EGF receptor and a degradation product of the receptor. These experiments provide chemical evidence that the EGF receptor and the EGF-stimulable kinase are the same protein.  相似文献   

2.
Treatment of membrane vesicles from A431 cells, a human epidermoid carcinoma line, with the affinity label 5'-p-fluorosulfonylbenzoyl [8-14C]adenosine (5'-p-FSO2Bz[14C]Ado) results in an inhibition of the epidermal growth factor (EGF)-stimulable protein kinase and in the modification of proteins having the same molecular weight (Mr = 170,000 and 150,000) as the receptor for EGF (Buhrow, S. A., Cohen, S., and Staros, J. V. (1982) J. Biol. Chem. 257, 4019-4022). Modification of the vesicles with 5'-p-FSO2BzAdo inhibits not only the EGF-stimulated phosphorylation of endogenous membrane proteins but also the EGF-stimulated phosphorylation of an exogenous synthetic tyrosine-containing peptide substrate. This indicates that the EGF-stimulable protein kinase is modified by 5'-p-FSO2BzAdo at a site affecting catalytic activity. Membrane vesicles were treated with 5'-p-FSO2Bz-[14C]Ado to affinity label the kinase, then the EGF receptor was purified by affinity chromatography on immobilized EGF. The EGF receptor thus purified contains the 5'-p-SO2Bz[14C]Ado moiety. These data strongly support our hypothesis that the EGF receptor and EGF-stimulable kinase are two parts of the same polypeptide chain.  相似文献   

3.
A method is described for a rapid two-step purification of the membrane receptor for epidermal growth factor (EGF) from cultured human A-431 cells. After solubilization of the cells with Triton X-100, the receptor is immobilized on an immunoaffinity column containing a monoclonal antibody directed against the receptor. In the second step of purification, the receptor, eluted from the antibody column, is adsorbed and specifically eluted from a lectin-agarose column. The molecular species obtained is mainly the 170,000-dalton EGF receptor polypeptide. The activity of the pure receptor depends on the conditions used for the desorption from the immunoaffinity beads. High-yield elution is obtained with acidic buffer and the receptor so purified specifically binds EGF, but is devoid of the kinase activity. When the elution is done with alkaline buffers or with buffer containing urea, a fully active receptor kinase is purified (yield of 10%). The pure receptor binds 125I-EGF with a Kd of 4 X 10(-8) M and retains EGF-sensitive protein kinase activity which phosphorylates tyrosine residues on the receptor itself. An additional protocol is described for large-scale purification (yield of 55%) of EGF receptor for the analysis of its primary structure. In this procedure, the EGF receptor is first purified by immunoaffinity chromatography which is followed by preparative gel electrophoresis of the 32P internally labeled receptor to remove minor protein contaminants.  相似文献   

4.
The binding of 125I-epidermal growth factor (EGF) to microsomal membrane preparations from the livers of rats fasted for 72 h or fed control or high carbohydrate diets was examined to determine whether alterations in nutrient intake could affect the EGF receptor system. Fasted rats had 40-50% less membrane binding than did control or carbohydrate-fed rats. Scatchard analysis of the binding data indicated that the decrease in EGF binding in fasted rats was due to a decrease in receptor number with no change in receptor affinity. Cross-linking of 125I-EGF to EGF receptors with disuccinimidyl suberate revealed specific binding of a Mr 170,000 protein, which was diminished by approximately 75% in fasting, and a Mr = 150,000 protein, which accounted for 40-50% of the total labeling in the control and carbohydrate-fed rats and which was relatively unchanged by fasting. The sum of the labeling of the 2 bands was reduced by approximately 40% in fasting and is consistent with the reduction in EGF binding detected by Scatchard analysis. EGF stimulated a 1.5-3-fold increase in 32P incorporation into one major protein of 170 kDa in all 3 groups. Basal and EGF-stimulated autophosphorylation of 170 kDa, when normalized for protein, was 75% lower in membranes from fasted animals, compared to those from control or carbohydrate-fed rats. The comparable reduction of 125I-EGF binding to, and 32P incorporation into, the 170-kDa EGF receptor protein suggested that kinase activity/receptor was unaffected by fasting. Moreover, EGF receptor kinase activity in the 3 groups was comparable for an exogenous substrate, as judged by equal basal and EGF-stimulated phosphorylation of Val5-angiotensin II, when normalized for total EGF-binding capacity. These results suggest that fasting regulates EGF receptor kinase activity primarily by regulation of the number of hepatic EGF receptors. The possibility exists that some in vivo effects of fasting may be mediated by a reduction in EGF receptor levels.  相似文献   

5.
NIH-3T3 cells expressing the human epidermal growth factor (EGF) receptor were used in experiments to determine the fate of the EGF receptor in cells continuously exposed to EGF. EGF receptor was immunoprecipitated from cells labeled for 12 h with [35S] methionine in the absence or presence of 10 nM EGF. As expected, a single Mr = 170,000 polypeptide representing the mature EGF receptor was immune-precipitated from control cells. Surprisingly, immune precipitates from EGF-treated cells contained a prominent Mr = 125,000 receptor species, in addition to the Mr = 170,000 mature receptor. The Mr = 125,000 species was shown to be derived from the Mr = 170,000 form by pulse-chase experiments, in which the Mr = 170,000 receptor chased into the Mr = 125,000 form when EGF was included during the chase and by partial proteolysis. Both proteins became extensively phosphorylated on tyrosine residues in immune precipitate kinase assays. Treatment of immune precipitates with endoglycosidase F changed the apparent molecular weight of the Mr = 170,000 receptor to Mr = 130,000 and of the Mr = 125,000 form to Mr = 105,000, indicating that the appearance of the Mr = 125,000 protein was probably due to proteolysis. Antibody against the carboxyl terminus of the mature EGF receptor recognized the Mr = 125,000 protein, whereas antibody against the amino terminus did not. Incubation of cells with leupeptin prior to and during EGF addition inhibited processing to the Mr = 125,000 species. Methylamine and low temperature also inhibited the EGF-induced processing to the Mr = 125,000 form. These data suggest a possible role for proteolysis of the EGF receptor in receptor function.  相似文献   

6.
DNA sequences encoding the human epidermal growth factor (EGF) receptor and various EGF-receptor deletion mutants were transfected into chinese hamster ovary (CHO) cells devoid of endogenous EGF receptors. A functional human EGF-receptor is expressed on the surface of heterologous CHO cells with the following properties: it exhibits typical high affinity (10%; Kd = 3 X 10(-10) M) and low affinity (90%; Kd = 3 X 10(-9) M) binding sites for 125I-EGF; it is expressed as a polypeptide of 170,000 molecular weight with intrinsic protein tyrosine kinase activity. EGF stimulates the kinase activity leading to self-phosphorylation and to phosphorylation of exogenous substrate; 125I-EGF is rapidly internalized into the CHO cells by receptor mediated endocytosis and; EGF stimulates DNA synthesis in the cells expressing the human EGF-receptor. Deletion of 63 amino acids from the C-terminal end of EGF-receptor, which removes two autophosphorylation sites, abolishes the high affinity state of the receptor. Nevertheless, this receptor mutant is able to undergo endocytosis and to respond mitogenically to EGF to a similar extent as the "wild type" receptor. Further deletions from the cytoplasmic domain give rise to low affinity endocytosis-defective receptor mutants. Finally, deletion of the transmembrane domain of the human receptor yields an EGF-receptor ligand binding domain which is secreted from the cells.  相似文献   

7.
We have reported the solubilization of complexes between vasoactive intestinal peptide (VIP) and its receptor from rat liver in a GTP-sensitive form of Mr 150,000 [Couvineau, A., Amiranoff, B. & Laburthe, M. (1986) J. Biol. Chem. 261, 14482-14489]. In the present study, we demonstrate a stable association of solubilized VIP receptor and stimulatory guanine nucleotide-binding protein (Gs protein), taking advantage of the ability of the glycoproteic VIP receptor (Mr 48,000), and the inability of the Gs protein, to adsorb to wheat germ agglutinin (WGA). 125I-VIP-receptor complexes solubilized in Triton X-100 were adsorbed on WGA-Sepharose, extensively washed and the radioactivity retained was eluted with 1 mM GTP showing that: (a) radioactivity corresponds to free 125I-VIP and (b) alpha s (Mr 42,000) and beta (Mr 35,000) subunits of Gs protein are detectable in the GTP eluate by immunoblotting using antisera against these subunits. Such an effect of GTP implied that a stable ternary complex consisting of VIP, receptor and Gs protein had been adsorbed to WGA-Sepharose. When Triton-solubilized 125I-VIP-receptor complexes were adsorbed on WGA-Sepharose, then retained material was specifically eluted with 0.3 M N-acetylglucosamine, analysis of the sugar eluate showed the following results. (a) GTP induces the dissociation of 125I-VIP-receptor complexes of Mr 150,000 contained in the eluate indicating that 125I-VIP-receptor-G protein complexes had been adsorbed to the WGA column. (b) The Mr-42,000 alpha s subunit can be specifically ADP-ribosylated by cholera toxin. (c) Immunoblotting using antisera against the alpha s and beta subunits of Gs protein, reveals Mr-42,000 and Mr-35,000 components corresponding to alpha s and beta subunits, respectively. (d) Affinity cross-linking using dithiobis(succinimidyl-propionate) of 125-I-VIP-receptor complexes eluted from the WGA column reveals a major band corresponding to Mr 150,000. Immunoblotting using antisera against the beta-subunit shows the presence of the beta subunit (Mr 35,000) in this Mr-150,000 component. In conclusion, these data provide functional and immunochemical evidence for the physical association of solubilized VIP-receptor complexes with alpha s and beta subunits of Gs protein.  相似文献   

8.
The EGF receptor cDNA has been transfected into receptor-negative Chinese hamster ovary (CHO) cells. A mutant cell line (CHO 11) was isolated that expresses a receptor of lower molecular weight than the EGF receptor from A431 cells (150,000 daltons compared to 170,000 daltons) and which appeared as a doublet on SDS-PAGE. By digestion of the receptor with endoglycosidase F it was shown that an altered pattern of glycosylation could not account for the smaller size of the protein, although it could explain the appearance of the CHO 11 receptor as a doublet protein. A deletion was located to the transfected cDNA and shown to involve the removal of coding sequences for the most C-terminal 20,000 daltons of the EGF receptor, which contains the three major autophosphorylation sites. Despite the loss of these sites the EGF receptor from CHO 11 cells binds EGF, demonstrates protein tyrosine kinase activity in response to EGF, and transduces a mitogenic signal. The CHO 11 receptor protein is still autophosphorylated on alternative tyrosine residues. We conclude that phosphorylation of the three tyrosines (P1, P2, and P3) in the C-terminal domain of the receptor is not required for signal transduction by the EGF receptor in these cells.  相似文献   

9.
A monoclonal antibody to the epidermal growth factor (EGF) receptor of A431 cells was obtained after fusion of immunized BALB/c mouse spleen cells with NS-1 myeloma cells. Specific binding of the antibody to the plasma membrane of A431 cells was demonstrated by indirect immunofluorescence and electron microscopy. The antibody did not react with human KB cells, normal rat kidney cells, or Swiss 3T3 cells. The antibody is an IgG3K; it specifically immunoprecipitated a Mr approximately 170,000 protein from radiolabeled A431 cell extracts. This protein is phosphorylated in a EGF-dependent manner in intact A431 cells and in Triton X-100-solubilized plasma membranes. The specificity of the interaction of the antibody with the Mr = 170,000 protein was confirmed by electrophoretic transfer of A431 cell proteins to nitrocellulose followed by incubation with the antibody and 125I-protein A. When 125I-EGF was covalently cross-linked to its receptor, the 125I-EGF-receptor complex was specifically precipitated by the antibody. The monoclonal antibody did not inhibit the binding of 125I-EGF to its receptor in intact A431 cells and also failed to stimulate the phosphorylation of the Triton X-100-solubilized EGF receptor. The results indicate that the antibody and EGF bind to different sites on the EGF receptor. The antibody will be useful for isolating the EGF receptor in an unactivated form.  相似文献   

10.
A rapid and simple method was developed for isolating denatured epidermal growth factor (EGF)-receptor suitable for use in preparation of polyclonal antisera. Membranes from A431 cells (which possess unusually high numbers of EGF-receptors) were phosphorylated in vitro with [gamma-32P]ATP and run on preparative sodium dodecyl sulfate (SDS)-polyacrylamide gels. The Mr 170,000 major phosphorylated region was excised from the gels, eluted, and protein chromatographed on SDS-hydroxylapatite. Fractions containing the Mr 170,000 tyrosine-phosphorylated protein were pooled, concentrated, and rerun on preparative SDS gels. The protein eluted from these gels was judged to be highly purified, based on peptide mapping and on comparison of proteins immunoprecipitated by monoclonal antibody against the EGF-receptor with proteins precipitated by polyclonal antibody prepared against the Mr 170,000 protein described here. The polyclonal antiserum recognized native and denatured EGF-receptor from human, rat, and mouse cells and should prove useful in studying EGF-receptor synthesis and function.  相似文献   

11.
Polyclonal antibodies to different antigenic forms of the epidermal growth factor (EGF) receptor-kinase from human A-431 cells have been produced, and their properties have been characterized and compared. Biochemically active receptor-kinase purified by affinity chromatography was employed as one type of antigen. Denatured receptor-kinase prepared by sodium dodecyl sulfate-gel electrophoresis of the affinity-purified receptor was used as the second type of antigen. Animals immunized with either type of antigen produced antibody capable of immunoprecipitating the receptor-kinase molecule. Antibodies produced in response to the biochemically active antigenic form of the receptor-kinase are capable of blocking 125I-EGF binding to the receptor and inhibited EGF-stimulated biological responses. These antisera are not species specific in their ability to inhibit growth-factor binding to the EGF receptor of various mammalian cells. However, these rabbit antisera were unable to inhibit 125I-EGF binding to rabbit cells. Although antisera produced in response to the denatured receptor-kinase molecule are not able to block 125I-EGF binding or EGF-stimulated biological responses, they are particularly efficient for the immunoprecipitation of solubilized 125I-EGF:receptor complexes. None of the antisera contain antibodies capable of interfering with basal receptor-kinase phosphorylation activity. Although each of the antisera immunoprecipitated this kinase activity, none of the antisera contained antibody which served as a phosphorylation substrate for the EGF receptor-kinase in contrast to the immunoglobulins present antisera to the src gene product of the Rous sarcoma virus.  相似文献   

12.
The Ca2+ channel antagonists receptor from rabbit skeletal muscle was purified to homogeneity. Following reconstitution into phosphatidylcholine vesicles, binding experiments with (+)[3H]PN 200-110, (-)[3H]D888 and d-cis-[3H]diltiazem demonstrated that receptor sites for the three most common Ca2+ channel markers copurified with binding stoichiometries close to 1:1:1. Sodium dodecyl sulfate gel analysis of the purified receptor showed that it is composed of only one protein of Mr 170,000 under non-reducing conditions and of two polypeptides of Mr 140,000 and 32,000 under disulfide-reducing conditions. Iodination of the protein of Mr 170,000 and immunoblots experiments with antisera directed against the different components demonstrated that the Ca2+ channel antagonists receptor is a complex of Mr 170,000 composed of a polypeptide chain of Mr 140,000 associated to one polypeptide chain of Mr 32,000 by disulfide bridges. One of the problems concerning this subunit structure of the putative Ca2+ channel was the presence of smaller polypeptide chains of Mr 29,000 and 25,000. Peptide mapping of these polypeptide chains and analysis of their cross-reactivity with sera directed against the proteins of Mr 170,000 and 32,000 demonstrated that they were degradative products of the Mr 32,000 component. Both the large (140 kDa) and the small (32 kDa) component of the putative Ca2+ channel are heavily glycosylated. At least 20-22% of their mass were removed by enzymatic deglycosylation. Finally the possibility that both the 140-kDa and 32-kDa components originate from a single polypeptide chain of Mr 170,000 which is cleaved by proteolysis upon purification is discussed.  相似文献   

13.
The biosynthesis and posttranslational metabolism of the epidermal growth factor (EGF) receptor were examined in the A431 human epidermoid carcinoma cell line. Polyclonal antibody against the receptor specifically immunoprecipitated two [35S]methionine-labeled proteins of Mr = 160,000 and 170,000. Pulse chase experiments showed the Mr = 160,000 protein to be a precursor of the Mr = 170,000 protein. Preincubation with tunicamycin resulted in immunoprecipitation of a single band of Mr = 130,000, whereas monensin inhibited maturation to the Mr = 170,000 form. Digestion of the Mr = 160,000 and 170,000 proteins with endoglycosidase H resulted in the appearance of Mr = 130,000 and 165,000 proteins, respectively. Prolonged pulse-chase experiments indicated that the half-life of the receptor is ca. 20 h in the absence of EGF and 5 h in the presence of EGF. Approximately three- to five-fold more phosphate is incorporated into the mature receptor upon addition of EGF, due primarily to increases in levels of phosphotyrosine and phosphoserine. Phosphate was also present on the Mr = 160,000 protein and the Mr = 130,000 protein found in the presence of tunicamycin.  相似文献   

14.
Antiserum to a defined region (residues 373-383) of the erbB oncogene product immunoprecipitated a 170,000 dalton protein that was phosphorylated in an EGF-sensitive fashion as well as the 125I-EGF-receptor complex from A431 human epidermoid carcinoma cells. Preincubation of the antiserum with an excess of the synthetic peptide corresponding to the defined region blocked the immunoprecipitation of this protein. A partial proteolytic peptide map of this immunoprecipitated 170,000 dalton protein was identical to that of the authentic EGF receptor. These results suggest immunological similarity between the erbB gene product and the EGF receptor.  相似文献   

15.
Epidermal growth factor (EGF) receptor protein has been purified in a single high-yield step by immunoaffinity chromatography of extracts of A431 cells. A monoclonal antibody directed against the EGF binding site of the receptor was immobilized to Sepharose 4B as a specific immune absorbent and competitive elution with EGF was used to obtain purified EGF receptor protein with tyrosine kinase activity. The stoichiometry of EGF binding was determined by comparing 125I-EGF binding to A431 cells with the mass of EGF receptor protein in those cells as measured by immunoaffinity chromatography, radioimmunoassay, and immune precipitation. Each measurement indicated one EGF binding site/EGF receptor protein molecule. Study of the kinetics of autophosphorylation revealed rapid incorporation of 1 mol of phosphate/mol of enzyme followed by slower incorporation of additional phosphate groups. The autophosphorylation reaction has a Km for ATP (0.2 microM) which is about 10-fold lower than that for phosphorylation of exogenous substrates. The kinetically preferred autophosphorylation is an intramolecular reaction.  相似文献   

16.
Regulation of cell proliferation by epidermal growth factor   总被引:27,自引:0,他引:27  
Epidermal Growth Factor (EGF) is a 6045 dalton polypeptide which stimulates the proliferation of various cell types in vitro and in vivo. EGF binds to diffusely distributed membrane receptors which rapidly cluster primarily on coated pits areas on the plasma membrane. Subsequently, the EGF-receptor complexes are endocytosed and degraded by lysosomal enzymes. The lateral diffusion coefficient (D) of EGF-receptor complexes on cultured cells increases gradually from D = 2.8 X 10(-10) cm2/sec at 5 degrees C to 8.5 X 10(-10) cm2/sec at 37 degrees C. In the same range of temperature the rotational correlation times change from 25 to 50 microseconds to approximately 350 microseconds. Hence, at 4 degrees C, the occupied EGF receptors translate and rotate rapidly in the plane of the membrane. At 37 degrees C, EGF receptors form microclusters composed of 10 to 50 molecules. Moreover, it is concluded that both at 4 degrees C and 37 degrees C lateral diffusion of the occupied receptors is not the rate determining step for either receptor clustering or internalization. EGF receptor is a 150,000 to 170,000 dalton glycoprotein. The receptor is in close proximity to an EGF-sensitive, cAMP-independent, tyrosine-specific protein kinase which also phosphorylates the receptor molecules itself. The EGF sensitive kinase is similar to the kinase activity which is associated with certain RNA tumor viruses. The fact that the non-mitogenic cyanogen-bromide cleaved EGF is as potent as native EGF in stimulating phosphorylation suggests that EGF-induced, protein phosphorylation is a necessary but insufficient signal for the induction of DNA synthesis by EGF. EGF receptor serves also as the binding site for Transforming Growth Factors (TGF) which compete with EGF and induce anchorage-independent growth of normal cells in soft agar. Tumor promoters such as phorbol ester effect the binding of EGF to its membrane receptors and its ability to stimulate DNA synthesis. EGF itself has also some tumor promoting activity. Hence, the membrane receptor for EGF seems to participate in the regulation of normal and neoplastic growth. Monoclonal antibodies against EGF receptor (IgM) induce various early and delayed effects of EGF, while their monovalent Fab' fragments are devoid of biological activity. These observations support the notions that EGF receptor rather than EGF itself is the active moiety and that the role of the hormone is to perturb the receptor in the appropriate way, probably by inducing the microaggregation of EGF receptors.  相似文献   

17.
The interaction between epidermal growth factor (EGF) and its target cells has been used as a model for studying the regulation of cell proliferation. Many of the details of binding and subsequent internalization and degradation of this growth factor have been elucidated by following the fate of [125I]EGF in the presence of responsive cells. To investigate the membrane-localized biochemical consequences of EGF-receptor complex formation, a subcellular membrane system has been developed. In this system, EGF enhances phosphorylation of its receptor as well as other endogenous proteins. This EGF-stimulable protein kinase activity is not separated from the EGF receptor activity either by detergent solubilization or by affinity purification of the solubilized membranes. The data suggest that the EGF-binding activity and EGF-sensitive protein kinase activity reside in a single membrane protein.  相似文献   

18.
Using as a starting material either a detergent extract or a protein fraction eluted from membranes with ethylene glycol bis (beta-aminoethyl ether)-N,N'-tetraacetic acid, we have isolated from human placental membranes a major substrate for the epidermal growth factor (urogastrone) receptor kinase (EGF kinase). The substrate was isolated both in an intact form, having a molecular mass of approximately 38-kDa (p38), and in a 35-kDa form (p35) representing a proteolytic cleavage product of p38. Both p38 and p35 cross-reacted with antibodies directed against bovine retinal transducin, but did not cross-react with antibodies directed against the 35-kDa beta subunit of human placental G-protein. Antisera directed against the placental EGF kinase substrate failed to react with either bovine or human placental src kinase substrate, p36. Conversely, antisera directed against p36 reacted only poorly with placental p38 or p35. Although p38 had a blocked amino terminus that precluded sequence analysis, p35 yielded an N-terminal sequence that was identical with residues 13-36 of human lipocortin. Our data clearly distinguish p38 from the previously described intestinal calcium binding protein calpactin I or p36 that is also a tyrosine kinase substrate, and our work points to a close relationship (if not identity) between p35 and a 35-kDa EGF receptor kinase substrate previously characterized in A431 cells. We conclude that p38 and p35, which very likely represent human placental lipocortin, may share only limited epitope homology with transducin alpha subunit; however, the possibility that p38, along with intestinal p36 and with a family of related calcium binding proteins, may, like transducin, play a role in receptor-mediated transmembrane signaling is discussed.  相似文献   

19.
We have isolated and partially purified an intracellular vesicle fraction from A-431 cells that contains both epidermal growth factor (EGF) and enzymatically active EGF:receptor/kinase. Exposure of intact A-431 cells to EGF leads to an accumulation of both EGF and kinase activity in this vesicle fraction. The accumulation is time- and temperature-dependent and is blocked by inhibitors of energy production. The EGF receptor in internalized vesicles is capable of autophosphorylation and, in the presence of Ca2+, of phosphorylation of the previously isolated 35-kDa protein (Fava, R. A., and Cohen, S. (1984) J. Biol. Chem. 259, 2636-2645). The demonstration of an EGF-induced increase in kinase activity of an internalized vesicle fraction lends credence to the hypothesis that EGF-induced endocytosis of the receptor is of physiological significance in the response of cells to this ligand. In addition, these results are consistent with the suggestion that the phosphorylation of the 35-kDa protein is associated with internalization of the EGF:receptor/kinase complex.  相似文献   

20.
Microsomal membranes from human placenta, which bind 5–20 pmol of 125I-epidermal growth factor (EGF) per mg protein, have been affinity-labeled with 125I-EGF either spontaneously or with dimethylsuberimidate. Coomassie blue staining patterns on SDS polyacrylamide gels are minimally altered, and the EGF-receptor complex appears as a specifically labeled band of 180,000 daltons which is not removed by urea, neutral buffers, or chaotropic salts but is partially extracted by mild detergents. Limited proteolysis by alpha chymotrypsin and several other serine proteases yields labeled fragments of 170,000, 130,000, 85,000, and 48,000 daltons. More facile cleavage by papain or bromelain rapidly degrades the hormone-receptor complex to smaller labeled fragments of about 35,000 and 25,000 daltons. These fragments retain the binding site for EGF, are capable of binding EGF, and remain associated with the membrane. Alpha chymotryptic digestion of receptor solubilized by detergents yields the same fragments obtained with intact vesicles, suggesting that the fragments may represent intrinsic proteolytic domains of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号