首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MALDI profiling and imaging mass spectrometry (IMS) are novel techniques for direct analysis of peptides and small proteins in biological tissues. In this work we applied them to the study of Anopheles gambiae antennae, with the aim of analysing expression of soluble proteins involved in olfaction perireceptor events. MALDI spectra obtained by direct profiling on single antennae and by the analysis of extracts, showed similar profiles, although spectra obtained through profiling had a richer ion population and higher signal to noise ratio. Male and female antennae showed distinct protein profiles. MALDI imaging experiments were also performed and differences were observed in the localization of some proteins. Two proteins were identified through high resolution measurement and top-down MS/MS experiments. A 8 kDa protein only present in the male antennae matched with an unannotated sequence of the An. gambiae genome, while the presence of odorant binding protein 9 (OBP-9) was confirmed through experiments of 2-DE, followed by MS and MS/MS analysis of digested spots. This work shows that MALDI MS profiling is a technique suitable for the analysis of proteins of small and medium MW in insect appendices, and allows obtaining data for several specimens which can be investigated for differences between groups. Proteins of interest can be identified through other complementary MS approaches.  相似文献   

2.
Zhang G  Neubert TA 《Proteomics》2006,6(2):571-578
Identification of tyrosine phosphorylation by MS is challenging due to its low abundance in biological samples. Therefore, specific enrichment of tyrosine phosphorylated peptides prior to their analysis is highly desirable. The application of immunopurification of phosphotyrosine (pY) peptides using pY antibodies has been greatly limited by poor selectivity. In the present study, we have shown that the selectivity of pY peptide immunopurification can be dramatically improved by adding detergents to immunoprecipitation buffers. Optimum selectivity and sensitivity were achieved using an immunoprecipitation buffer containing n-octyl glucoside with a concentration above its critical micelle concentration (0.7%). The optimized method was used to identify in vivo tyrosine phosphorylation on proteins isolated from cell extract by anti-pY protein immunoprecipitation. After immunopurification, non-pY-containing peptides from protein digests were readily removed and pY peptides became the dominant peaks in MALDI quadrupole-TOF mass spectra. In addition, the signal intensities from pY-containing peptides were enhanced significantly after enrichment, allowing characterization of tyrosine phosphorylation sites with greater sensitivity.  相似文献   

3.
Uni- or multidimensional microcapillary liquid chromatography (microLC) matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS/MS) approaches have gained significant attention for quantifying and identifying proteins in complex biological samples. The off-line coupling of microLC with MS quantitation and MS/MS identification methods makes new result-dependent workflows possible. A relational database is used to store the results from multiple high performance liquid chromatography runs, including information about MALDI plate positions, and both peptide and protein quantitations, and identifications. Unlike electrospray methodology, where all the decisions about which peptide to fragment, must be made during peptide fractionations, in the MALDI experiments the samples are effectively "frozen in time". Therefore, additional MS and MS/MS spectra can be acquired, to promote more accurate quantitation or additional identifications until reliable results are derived that meet experimental design criteria. In the case of what can be designated the expression-dependent workflow, quantitation can be detached from identification and only peak pairs with biological relevant expression changes can be selected for further MS/MS analyses. Alternatively, additional MS/MS data can be acquired to confirm tentative peptide mass fingerprint hits in what is designated a search result-dependent workflow. In the MS data-dependent workflow, the goal is to collect as many meaningful spectra as possible by judiciously adjusting the acquisition parameters based on characteristics of the parent masses. This level of sophistication requires the development of innovative algorithms for these three result-dependent workflows that make MS and MS/MS analysis more efficient and also add confidence to experimental results.  相似文献   

4.
MALDI mass spectra were obtained from cancer cells isolated by laser capture microdissection (LCM) of archived tissue. Frozen human lung tissue from adenocarcenoma and squamous cell carcenoma cases were cut into 5 to 15 microm thick sections, stained with hematoxylin and dehydrated. Cancer cells were isolated by LCM, mixed with matrix solution, and deposited on a MALDI target for mass spectrometric analysis. For comparison with LCM isolated cells, tissue sections were placed directly on the MALDI target without microdissection. Tissue sections frozen in optimal cutting temperature (OCT) solution and cut into 8 microm thick sections gave the best performance with direct MALDI analysis. Between 15 and 20 peaks were observed in the mass region between 1,000 and 4,000 Da, and roughly half of these peaks were common to either squamous cells or adenocarcenoma. Additional peaks were observed in the non-LCM mass spectra and these may result from biomolecules in the healthy tissue. When compared to fresh tissue, both LCM and non-LCM archived tissue produced fewer peaks, possibly due to degradation of the biomolecules in the archived tissue.  相似文献   

5.
We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1 microL) of a concentrated suspension of isolated chlorosomes directly to the target of the mass spectrometer we have been able to detect bacteriochlorophyll a and all the major homologs of bacteriochlorophyll c. The peak heights of the different bacteriochlorophyll c homologs in the MALDI spectra were proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously determined by conventional biochemical and genetic methods, and demonstrate the presence of truncated versions of CsmA and CsmB.  相似文献   

6.
Tryptic digestion of proteins continues to be a workhorse of proteomics. Traditional tryptic digestion requires several hours to generate an adequate protein digest. A number of enhanced accelerated digestion protocols have been developed in recent years. Nonetheless, a need still exists for new digestion strategies that meet the demands of proteomics for high-throughput and rapid detection and identification of proteins. We performed an evaluation of direct tryptic digestion of proteins on a MALDI target plate and the potential for integrating RP HPLC separation of protein with on-target tryptic digestion in order to achieve a rapid and effective identification of proteins in complex biological samples. To this end, we used a Tempo HPLC/MALDI target plate deposition hybrid instrument (ABI). The technique was evaluated using a number of soluble and membrane proteins and an MRC5 cell lysate. We demonstrated that direct deposition of proteins on a MALDI target plate after reverse-phase HPLC separation and subsequent tryptic digestion of the proteins on the target followed by MALDI TOF/TOF analysis provided substantial data (intact protein mass, peptide mass and peptide fragment mass) that allowed a rapid and unambiguous identification of proteins. The rapid protein separation and direct deposition of fractions on a MALDI target plate provided by the RP HPLC combined with off-line interfacing with the MALDI MS is a unique platform for rapid protein identification with improved sequence coverage. This simple and robust approach significantly reduces the sample handling and potential loss in large-scale proteomics experiments. This approach allows combination of peptide mass fingerprinting (PMF), MS/MS peptide fragment fingerprinting (PPF) and whole protein MS for both protein identification and structural analysis of proteins.  相似文献   

7.
Gilbert TW  Sone ED 《Biofouling》2010,26(7):829-836
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7-7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species.  相似文献   

8.
Studies were conducted to optimize matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI TOF MS) in analyzing the composition of nicotinic acetylcholine receptors (nAChR) from Torpedo californica electric tissue in their membrane-bound, detergent-solubilized, and affinity-purified states. Mass spectra obtained from nAChR-rich membrane fractions gave reasonably good representations of protein compositions indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of those same samples. Efficiency of extraction of nAChR from membranes was not markedly different for most detergents, but quality and signal size of mass spectra were clearly influenced by detergent composition and concentration, protein concentration, and MALDI matrix composition. The best spectra, allowing detection and accurate size determinations for samples containing as little as 10 fmol of pure nAChR, were obtained for samples solubilized in Triton X-100 and assayed by use of a sinapinic acid matrix. Although informative spectra could be obtained for nAChR affinity purified on alpha-cobratoxin (Naja naja siamensis) columns and extracted using sinapinic acid, superior spectra with much higher signal:noise were obtained if extraction media contained Triton X-100 or sodium dodecyl sulfate. nAChR subunit masses determined were similar regardless of the membrane-associated, detergent-solubilized, or affinity-purified state of the preparation. These studies illustrate how masses can be determined for nAChR subunits and for other protein components in Torpedo membrane preparations, such as RAPsyn and Na(+)-K(+)-ATPase alpha and beta subunits. They also provide an underpinning for streamlined analysis of the composition of complex transmembrane proteins using MALDI TOF MS.  相似文献   

9.
Serum protein profiling by mass spectrometry has achieved attention as a promising technology in oncoproteomics. We performed a systematic review of published reports on protein profiling as a diagnostic tool for breast cancer. The MEDLINE, EMBASE, and COCHRANE databases were searched for original studies reporting discriminatory protein peaks for breast cancer as either protein identity or as m/ z values in the period from January 1995 to October 2006. To address the important aspect of reproducibility of mass spectrometry data across different clinical studies, we compared the published lists of potential discriminatory peaks with those peaks detected in an original MALDI MS protein profiling study performed by our own research group. A total of 20 protein/peptide profiling studies were eligible for inclusion in the systematic review. Only 3 reports included information on protein identity. Although the studies revealed a considerable heterogeneity in relation to experimental design, biological variation, preanalytical conditions, methods of computational data analysis, and analytical reproducibility of profiles, we found that 45% of peaks previously reported to correlate with breast cancer were also detected in our experimental study. Furthermore, 25% of these redetected peaks also showed a significant difference between cases and controls in our study. Thus, despite known problems related to reproducibility, we were able to demonstrate overlap in peaks between clinical studies indicating some convergence toward a set of common discriminating, reproducible peaks for breast cancer. These peaks should be further characterized for identification of the protein identity and validated as biomarkers for breast cancer.  相似文献   

10.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has become a valuable tool to address a broad range of questions in many areas of biomedical research. One such application allows spectra to be obtained directly from intact tissues, termed "profiling" (low resolution) and "imaging" (high resolution). In light of the fact that MALDI tissue profiling allows over a thousand peptides and proteins to be rapidly detected from a variety of tissues, its application to disease processes is of special interest. For example, protein profiles from tumors may allow accurate prediction of tumor behavior, diagnosis, and prognosis and uncover etiologies underlying idiopathic diseases. MALDI MS, in conjunction with laser capture microdissection, is able to produce protein expression profiles from a relatively small number of cells from specific regions of heterogeneous tissue architectures. Imaging mass spectrometry enables the investigator to assess the spatial distribution of proteins, drugs, and their metabolites in intact tissues. This article provides an overview of several tissue profiling and imaging applications performed by MALDI MS, including sample preparation, matrix selection and application, histological staining prior to MALDI analysis, tissue profiling, imaging, and data analysis. Several applications represent direct translation of this technology to clinically relevant problems.  相似文献   

11.
It was shown that matrix-assisted laser desorption/ionization (MALDI) mass spectrometry could be used for the diagnostic characterization of propionic acid bacteria (PABs). The spectra of proteins (whole PAB cells) with a molecular mass of 3000 to 11 000 were obtained and analyzed using three matrices: sinapinic (SA), 2,5-dihydroxibenzoic (DHB), and α-cyano-4-hydroxycinnamic acid (HCCA). The MALDI spectra of PAB revealed the protein peaks characteristic of (1) the genus Propionibacterium (3496, 5386, 5605, 10 470), (2) the groups of species sharing the common composition of their cell walls and fatty acids, and (3) a species (four species were investigated). Exemplified by the P. shermanii strains (the collection and mutant ones) producing and not producing vitamin B12, the possibility of using MALDI profiles for strain differentiation was confirmed. The MALDI profiles of the propionic acid cocci of the genus Luteococcus differ substantially from the profiles of PAB strains of the genus Propionibacterium, which is an additional proof of the validity of whole-cell MALDI spectra for generic differentiation of bacteria. Our investigation shows that the bacterial groups determined using the MALDI profiles correlate with the phylogenetic 16S rRNA gene groups, thus demonstrating the high resolution of this method for the differentiation of intraspecific differences (subspecies, strains).  相似文献   

12.
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7–7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species.  相似文献   

13.
A new sample preparation method was developed for fresh, whole-cell Gram-positive bacteria to be analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI ToF MS). With fresh, whole-cell Gram-negative bacteria of the Enterobacteriaceae family, we had previously achieved spectra consisting of >50 peaks and mass ranges of 2-25 kDa. Because similar spectral quantity could not be achieved for Gram-positive bacteria, using this same protocol, we investigated an alternative approach that focuses on the thick peptidoglycan layer of the cell wall. Gram-positive bacteria were incubated with 0.05-0.5 mg/ml lysozyme for 30 min prior to being analyzed by MALDI ToF MS. Lysozyme is an enzymatically stable, 14-kDa protein that specifically cleaves between peptidoglycan disaccharide subunits. A significant increase in overall number of peaks (>50) in the 2-14 kDa range was observed without interference from the presence of lysozyme. We show that for four different species (Staphylococcus aureus, S. haemolyticus, Streptococcus pyogenes, and S. agalactiae) reproducible subset of peaks were found within spectra from a reference strain and two unrelated clinical isolates. The data suggests that this sample preparation may be useful for increasing the overall number of peaks within spectra for subsequent development of bacterial identification strategies.  相似文献   

14.
Mass spectrometry using matrix-assisted laser desorption/ionization (MALDI) is a widespread technique for various types of proteomic analysis. In the identification of proteins using peptide mass fingerprinting, samples are enzymatically digested and resolved into a number of peptides, whose masses are determined and matched with a sequence data-base. However, the presence inside the cell of several splicing variants, protein isoforms, or fusion proteins gives rise to a complex picture, demanding more complete analysis. Moreover, the study of species with yet uncharacterized genomes or the investigation of post-translational modifications are not possible with classical mass fingerprinting, and require specific and accurate de novo sequencing. In the last several years, much effort has been made to improve the performance of peptide sequencing with MALDI. Here we present applications using a fast and robust chemical modification of peptides for improved de novo sequencing. Post-source decay of derivatized peptides generates at the same time peaks with high intensity and simple spectra, leading to a very easy and clear sequence determination.  相似文献   

15.
Although peptide mass fingerprinting is currently the method of choice to identify proteins, the number of proteins available in databases is increasing constantly, and hence, the advantage of having sequence data on a selected peptide, in order to increase the effectiveness of database searching, is more crucial. Until recently, the ability to identify proteins based on the peptide sequence was essentially limited to the use of electrospray ionization tandem mass spectrometry (MS) methods. The recent development of new instruments with matrix-assisted laser desorption/ionization (MALDI) sources and true tandem mass spectrometry (MS/MS) capabilities creates the capacity to obtain high quality tandem mass spectra of peptides. In this work, using the new high resolution tandem time of flight MALDI-(TOF/TOF) mass spectrometer from Applied Biosystems, examples of successful identification and characterization of bovine heart proteins (SWISS-PROT entries: P02192, Q9XSC6, P13620) separated by two-dimensional electrophoresis and blotted onto polyvinylidene difluoride membrane are described. Tryptic protein digests were analyzed by MALDI-TOF to identify peptide masses afterward used for MS/MS. Subsequent high energy MALDI-TOF/TOF collision-induced dissociation spectra were recorded on selected ions. All data, both MS and MS/MS, were recorded on the same instrument. Tandem mass spectra were submitted to database searching using MS-Tag or were manually de novo sequenced. An interesting modification of a tryptophan residue, a "double oxidation", came to light during these analyses.  相似文献   

16.
There are different glycosylated proteins in snake venoms, but no glycosylated representatives of a large family of three-fingered toxins have previously been detected. A new glycoprotein was isolated from the venom of the Thai cobra Naja kaouthia. MALDI MS of the glycoprotein contained an array of peaks in the range from approximately 8900 to approximately 9400 Da indicating its microheterogeneity. Carbohydrate analysis showed the presence of mannose, galactose, N-acetylglucosamine, fucose and neuraminic acid. The N-terminal sequence of the glycoprotein was identical to that of cytotoxin 3 (CX3) from N. kaouthia, and CD spectra of the glycoprotein and CX3 were almost the same. Cleavage of a glycan moiety by N-glycosidase F gave a protein of molecular mass practically coinciding with that of CX3. MALDI MS of the tryptic digest of reduced glycoprotein S-pyridylethylated at cysteine residues, contained peaks corresponding to all tryptic fragments of CX3, with the exception of fragment 24-30. The peak corresponding to this peptide appeared in the mass-spectrum of similarly treated deglycosylated glycoprotein. These data show that the potential N-glycosylation site at Asn29 in CX3 is utilized for glycan attachment and that the glycoprotein is glycosylated CX3. In vivo toxicity of the glycoprotein to the cricket Gryllus assimilis was twofold lower than that of CX3. The cytotoxic activity of the glycoprotein towards HL60 cells was about two orders of magnitude lower than that of CX3, but could be made equal to the CX3 cytotoxicity by deglycosylation. Thus for the first time we have isolated a glycosylated three-fingered snake venom toxin wherein glycosylation appears to modulate its biological activity.  相似文献   

17.
The identification of proteins separated on two-dimensional gels is most commonly performed by trypsin digestion and subsequent matrix-assisted laser desorption ionization (MALDI) with time-of-flight (TOF). Recently, atmospheric pressure (AP) MALDI coupled to an ion trap (IT) has emerged as a convenient method to obtain tandem mass spectra (MS/MS) from samples on MALDI target plates. In the present work, we investigated the feasibility of using the two methodologies in line as a standard method for protein identification. In this setup, the high mass accuracy MALDI-TOF spectra are used to calibrate the peptide precursor masses in the lower mass accuracy AP-MALDI-IT MS/MS spectra. Several software tools were developed to automate the analysis process. Two sets of MALDI samples, consisting of 142 and 421 gel spots, respectively, were analyzed in a highly automated manner. In the first set, the protein identification rate increased from 61% for MALDI-TOF only to 85% for MALDI-TOF combined with AP-MALDI-IT. In the second data set the increase in protein identification rate was from 44% to 58%. AP-MALDI-IT MS/MS spectra were in general less effective than the MALDI-TOF spectra for protein identification, but the combination of the two methods clearly enhanced the confidence in protein identification.  相似文献   

18.
Imaging mass spectrometry (IMS) has developed into a powerful tool allowing label-free detection of numerous biomolecules in situ. In contrast to shotgun proteomics, proteins/peptides can be detected directly from biological tissues and correlated to its morphology leading to a gain of crucial clinical information. However, direct identification of the detected molecules is currently challenging for MALDI–IMS, thereby compelling researchers to use complementary techniques and resource intensive experimental setups. Despite these strategies, sufficient information could not be extracted because of lack of an optimum data combination strategy/software. Here, we introduce a new open-source software ImShot that aims at identifying peptides obtained in MALDI–IMS. This is achieved by combining information from IMS and shotgun proteomics (LC–MS) measurements of serial sections of the same tissue. The software takes advantage of a two-group comparison to determine the search space of IMS masses after deisotoping the corresponding spectra. Ambiguity in annotations of IMS peptides is eliminated by introduction of a novel scoring system that identifies the most likely parent protein of a detected peptide in the corresponding IMS dataset. Thanks to its modular structure, the software can also handle LC–MS data separately and display interactive enrichment plots and enriched Gene Ontology terms or cellular pathways. The software has been built as a desktop application with a conveniently designed graphic user interface to provide users with a seamless experience in data analysis. ImShot can run on all the three major desktop operating systems and is freely available under Massachusetts Institute of Technology license.  相似文献   

19.
We compared trysin-digested protein samples desalted by ZipTip(C18) reverse-phase microcolumns with on-plate washing of peptides deposited either on paraffin-coated plates (PCP), Teflon-based AnchorChip plates, or stainless steel plates, before analysis by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Trypsinized bovine serum albumin and ovalbumin and 16 protein spots extracted from silver-stained two-dimensional gels of murine C(2)C(12) myoblasts or human leukocytes, prepared by the above two methods, were subjected to MALDI on PCP, AnchorChip plates, or uncoated stainless steel plates. Although most peptide mass peaks were identical regardless of the method of desalting and concentrating of protein samples, samples washed and concentrated by the PCP-based method had peptide peaks that were not seen in the samples prepared using the ZipTip(C18) columns. The mass spectra of peptides desalted and washed on uncoated stainless steel MALDI plates were consistently inferior due to loss of peptides. Some peptides of large molecular masses were apparently lost from samples desalted by ZipTip(C18) microcolumns, thus diminishing the quality of the fingerprint needed for protein identification. We demonstrate that the method of washing of protein samples on paraffin-coated plates provides an easy, reproducible, inexpensive, and high-throughput alternative to ZipTip(C18)-based purification of protein prior to MALDI-TOF-MS analysis.  相似文献   

20.
【目的】基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)法基于微生物的特征蛋白指纹图谱鉴定菌种,本研究利用基因组学和MALDI-TOFMS技术鉴定放线菌纲细菌的核糖体蛋白质标志物。【方法】从MALDI-TOF MS图谱数据库选取放线菌纲代表菌种,在基因组数据库检索目标菌种,获取目标菌株或其参比菌株的核糖体蛋白质序列,计算获得分子质量理论值,用于注释目标菌株MALDI-TOFMS指纹图谱中的核糖体蛋白质信号。【结果】从8目,24科,53属,114种,142株放线菌的MALDI-TOFMS图谱中总共注释出31种核糖体蛋白质。各菌株的指纹图谱中核糖体蛋白质信号数量差异显著。各种核糖体蛋白质信号的注释次数差异显著。总共15种核糖体蛋白质在超过半数图谱中得到注释,注释次数最高的是核糖体大亚基蛋白质L36。【结论】本研究找到了放线菌纲细菌MALDI-TOF MS图谱中常见的15种核糖体蛋白质信号,可为通过识别核糖体蛋白质的质谱特征峰鉴定放线菌的方法建立提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号