首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ light measurements were used to obtain information oninherent and apparent optical properties. The average verticalattenuation coefficient Kd(ave) varied from 1.1 to 4.6 In unitsm–1 During three periods the variation in Kd(ave) correlatedwith changes in chlorophyll a concentration and specific attenuationcoefficients Ks, of 0.013, 0.014 and 0.022 m2 mg Chl a–1were calculated. Chlorophyll-specific diffuse absorption coefficients(A,) for these periods were 0.012. 0.013 and 0.017 m2 mg Chla–1 and only varied significantly from estimates of Ksin the period when scattering was intense. Absorption coefficientsa(zmid) and scattering coefficients b(zmid) calculated for themid-point of the euphotic zone ranged between 0.45 and 2.9 mand 3.5–52.0 m respectively. Chlorophyll-specific absorptioncoefficients Ka, of 0.005, 0.006 and 0.007 m2 mg Chl a–1and scattering coefficients Kb of 0.05. 0.09 and 0.191 m2 mgChl a–1 were measured during the three periods. The highKb value occurred when gas-vacuolate cyanobactena were dominant.Algal photosynthesis and light absorption were related throughthe maximum quantum yield m which varied between 0.019 and 0.11mol C Einstein–1 while average quantum yields a, variedbetween 0.006 and 0.024 with a mean of 0.013 mol C Einstein–1A comparison of changes in the mean irradiance of the mixedzone and chlorophyll concentration indicated that growth waslight limited below 0.04–0.05 Einsteins absorbed mg Chla–1 day–1.  相似文献   

2.
Community respiration (R) was determined in Bransfield Straitfrom oxygen changes in water samples incubated in borosilicatebottles maintained at in situ temperature. The respiratory electrontransport system (ETS) activity of seawater communities wasalso measured from the same samples. Both data sets were relatedby the regression equation: log R (mg O2 m–3 day–1)=0.462+0.730xlogETS activity mg O2 m–3 day–1) (r=0.80, n=23). Fromthis equation and 37 ETS activity depth profiles, we calculatedthe integrated (0–100 m) community respiration as beingin the range 1.2–4.5 g O2 m–2 day–1 (mean=2.2).These values do not differ significantly from other publishedresults for the Arctic and Antarctic Oceans. Assuming a respiratoryquotient of unity, the areal respiration ranges between 0.45and 1.69 g C m–2 day–1 (mean=0.8). This would representan important sink for the primary production reported for BransStrait. The spatial distribution of community respiration showedhigher values associated with the warmer and phytoplankton-richwaters outflowing from Gerlache Strait into Bransfield Strait,and with the front that separates Bellingshausen Sea watersfrom Weddell Sea waters. We suggest that this pattern of distributionmay be related to the transport of organic matter by the BransfieldCurrent along the front.  相似文献   

3.
Oikopleura longicauda occurred throughout the year in ToyamaBay, southern Japan Sea, and analysis of its size compositionand maturity revealed that reproduction was continuous overtheyear. Somatic growth production (Pg) varied with season from0.03 to 103 mg carbon (C) m–2day–1 (annual Pg 4.5g C m–2), and house production (Pe) from 0.11 to 266 mgC m–2 day–1 (annualPe 11.3 g C m–2). The annualPg/B ratio was 176. Compared with production data of some predominantzooplankton species in Toyama Bay, it is suggested that despitetheir smaller biomass, appendicularians are an important secondaryproducer.  相似文献   

4.
Spruce (Picea abies (L.) Karst.) seedlings were asepticallycultivated and the effects of different N-nutrition on net uptakeand reduction of nitrate were investigated. The characteristicsof nitrate uptake were calculated, Ks as 0?2 mol m–3 andVmax as 18 µmol g–1 d–1. Low pH, and Al3+ in the medium caused adecrease in nitrate uptake rate. An in vivo assay was set upwhich allowed the measurement of NRA in both roots and needlesof spruce seedlings. The in vivo nitrate reductase activitywas repressed by ammonium and stimulated by nitrate. Nitratereduction was similar to nitrate uptake, negatively affectedby low pH and ammonium. Therefore, a limited N-supply to spruceseemed to occur when pH was low in the rhizosphere combinedwith the presence of Al3+ and . Key words: Spruce, nitrate uptake, nitrate reduction  相似文献   

5.
Effects of diffusion and upwelling on the formation of red tides   总被引:4,自引:0,他引:4  
In this paper, records on the timing and location of specificred tides monitored once or twice a week in Mikawa Bay, Japan,are related to horizontal and vertical mixing rates determinedfrom a numerical model. Horizontal (Kh) and vertical (Kz) diffusioncoefficients, and upwelling velocities, were estimated usinga box model analysis. In the wind-mixed period and in the upperlayer during the stratified period, Kh was estimated to be ofthe order of 102 m2 s–1. During the stratified period,Kz was estimated to be of the order of 10–5 m2 s–1.The upwelling velocity was calculated to be in the range 0.35–5.1m day–1 with an average of 1.5 m day–1. Comparisonbetween the literature values of the specific growth rate (µ)of the red tide-forming diatoms and calculated Kh values duringthe red tides show that diatoms which have a low µ cannotform red tides in a strongly diffusive environment, while specieshaving a high µ can form red tides even in a strong diffusiveenvironment. On the other hand, no clear relationship was foundbetween µ of the flagellate group and Kh, although theflagellate group formed red tides even in severe diffusive conditions.From the comparison between the literature values of sinkingrate and swimming speed and the physical parameters associatedwith vertical processes, it was concluded that flagellates willform red tides, even in severe diffusive conditions, by usingtheir swimming ability, while diatoms form red tides by theirhigh growth rates with the aid of vertical diffusion and theupwelling movement of water.  相似文献   

6.
In situ growth and development of Neocalanus flemingeri/plumchrusstage C1–C4 copepodites were estimated by both the artificial-cohortand the single-stage incubation methods in March, April andMay of 2001–2005 at 5–6°C. Results from thesetwo methods were comparable and consistent. In the field, C1–C4stage durations ranged from 7 to >100 days, dependent ontemperature and chlorophyll a (Chl a) concentration. Averagestage durations were 12.4–14.1 days, yielding an averageof 56 days to reach C5, but under optimal conditions stage durationswere closer to 10 days, shortening the time to reach C5 (fromC1) to 46 days. Generally, growth rates decreased with increasingstage, ranging from 0.28 day–1 to close to zero but weretypically between 0.20 and 0.05 day–1, averaging 0.110± 0.006 day–1 (mean ± SE) for single-stageand 0.107 ± 0.005 day–1 (mean ± SE) forartificial-cohort methods. Growth was well described by equationsof Michaelis–Menten form, with maximum growth rates (Gmax)of 0.17–0.18 day–1 and half saturation Chl a concentrations(Kchl) of 0.45–0.46 mg m–3 for combined C1–3,while Gmax dropped to 0.08–0.09 day–1 but Kchl remainedat 0.38–0.93 mg m–3 for C4. In this study, in situgrowth of N. flemingeri/plumchrus was frequently food limitedto some degree, particularly during March. A comparison withglobal models of copepod growth rates suggests that these modelsstill require considerable refinement. We suggest that the artificial-cohortmethod is the most practical approach to generating the multispeciesdata required to address these deficiencies.  相似文献   

7.
Trophic interactions within the plankton of the lowland RiverMeuse (Belgium) were measured in spring and summer 2001. Consumptionof bacteria by protozoa was measured by monitoring the disappearanceof 3H-thymidine-labelled bacteria. Metazooplankton bacterivorywas assessed using 0.5-µm fluorescent microparticles (FMPs),and predation of metazooplankton on ciliates was measured usingnatural ciliate assemblages labelled with FMPs as tracer food.Grazing of metazooplankton on flagellates was determined throughin situ incubations with manipulated metazooplankton densities.Protozooplankton bacterivory varied between 6.08 and 53.90 mgC m–3 day–1 (i.e. from 0.12 to 0.86 g C–1bacteria g C–1 protozoa day–1). Metazooplankton,essentially rotifers, grazing on bacteria was negligible comparedwith grazing by protozoa (1000 times lower). Predation of rotiferson heterotrophic flagellates (HFs) was generally low (on average1.77 mg C m–3 day–1, i.e. 0.084 g C–1 flagellatesg C–1 rotifers day–1), the higher contribution ofHF in the diet of rotifers being observed when Keratella cochleariswas the dominant metazooplankter. Predation of rotifers on ciliateswas low in spring samples (0.56 mg C m–3 day–1,i.e. 0.014 g C–1 ciliates g C–1 rotifers day–1)in contrast to measurements performed in July (8.72 mg C m–3day–1, i.e. 0.242 g C–1 ciliates g C–1 rotifersday–1). The proportion of protozoa in the diet of rotiferswas low compared with that of phytoplankton (<30% of totalcarbon ingestion) except when phytoplankton biomass decreasedbelow the incipient limiting level (ILL) of the main metazooplantonicspecies. In such conditions, protozoa (mainly ciliates) constituted50% of total rotifer diet. These results give evidence thatmicrobial organisms play a significant role within the planktonicfood web of a eutrophic lowland river, ciliates providing analternative food for metazooplankton when phytoplankton becomesscarce.  相似文献   

8.
Yield stress threshold (Y) and volumetric extensibility () arethe rheological properties that appear to control root growth.In this study they were measured in wheat roots by means ofparallel measurement of the growth rate (r) of intact wheatroots and of the turgor pressures (P) of individual cells withinthe expansion zone. Growth and turgor pressure were manipulatedby immersion in graded osmoticum (mannitol) solutions. Turgorwas measured with a pressure probe and growth rate by visualobservation. The influence of various growth conditions on Yand was investigated; (a) At 27 °C.In 0.5 mol m–3 CaCl2 r, P, Y and were20.7±4.6 µm min–1, 0.77±0.05 MPa,0.07±0.03 MPa and 26±1.9 µm min–1MPa–1 (expressed as increase in length), respectively.Following 24 h growth in 10 mol m–3 KC1 these parametersbecame 12.3±3.5 µm min–1, 0.72±0.04MPa, 0.13±0.01 MPa and 21±0.7 µm min–1MPa–1. After 24 h osmotic adjustment in 150 mol m–3mannitol/0.5 mol m–3 CaCl2 r= 19.6±4.2 µmmin–1, P = 0.68±0.05 MPa and Y and were 0.07±0.04MPa and 30±0.2 µm min–1 MPa–01, respectively.After 24 h growth in 350 mol m–3 mannitol/0.5 mol m–3CaCl2 r= 13.3±4.1 µm min–1, P= 0.58±0.07MPa, Y=0.12±0.01 MPa and ø 32±0.2 tim min–1MPa–1. During osmotic adjustment in 200 mol m–3mannitol/0.5 mol m–3 CaCl2, with or without KCl, the recoveryof growth rate corresponded to turgor pressure recovery (t1/2approximately 3 h). (b) At 15 °C. Lowered temperature dramatically influencedthe growth parameters which became r= 8.3±2.8 um min–1,P=0.78 MPa, r=<0.2 MPa and =15±0.1 µm min–1MPa–1. Therefore, Y and are influenced by 10 mol m–3 K+ ionsand low temperature. In each case the effective pressure forgrowth (P-Y) was large indicating that small fluctuations ofsoil water potential will not stop root elongation. Key words: Yield threshold, cell wall extensibility, wheat root growth, temperature, turgor pressur  相似文献   

9.
Patients treated with glucocorticoids have elevated skeletal muscle ouabain binding sites. The major Na+-K+-ATPase (NKA) isoform proteins found in muscle, 2 and 1, are increased by 50% in rats treated for 14 days with the synthetic glucocorticoid dexamethasone (DEX). This study addressed whether the DEX-induced increase in the muscle NKA pool leads to increased insulin-stimulated cellular K+ uptake that could precipitate hypokalemia. Rats were treated with DEX or vehicle via osmotic minipumps at one of two doses: 0.02 mg·kg–1·day–1 for 14 days (low DEX; n = 5 pairs) or 0.1 mg·kg–1·day–1 for 7 days (high DEX; n = 6 pairs). Insulin was infused at a rate of 5 mU·kg–1·min–1 over 2.5 h in conscious rats. Insulin-stimulated cellular K+ and glucose uptake rates were assessed in vivo by measuring the exogenous K+ infusion () and glucose infusion (Ginf) rates needed to maintain constant plasma K+ and glucose concentrations during insulin infusion. DEX at both doses decreased insulin-stimulated glucose uptake as previously reported. Ginf (in mmol·kg–1·h–1) was 10.2 ± 0.6 in vehicle-treated rats, 5.8 ± 0.8 in low-DEX-treated rats, and 5.2 ± 0.6 in high-DEX-treated rats. High DEX treatment also reduced insulin-stimulated K+ uptake. (in mmol·kg–1·h–1) was 0.53 ± 0.08 in vehicle-treated rats, 0.49 ± 0.14 in low-DEX-treated rats, and 0.27 ± 0.08 in high-DEX-treated rats. DEX treatment did not alter urinary K+ excretion. NKA 2-isoform levels in the low-DEX-treated group, measured by immunoblotting, were unchanged, but they increased by 38 ± 15% (soleus) and by 67 ± 3% (gastrocnemius) in the high-DEX treatment group. The NKA 1-isoform level was unchanged. These results provide novel evidence for the insulin resistance of K+ clearance during chronic DEX treatment. Insulin-stimulated cellular K+ uptake was significantly depressed despite increased muscle sodium pump pool size. skeletal muscle; sodium pump; Na+-K+-ATPase  相似文献   

10.
Influx of nitrate into the roots of intact barley plants wasfollowed over periods of 1–15 min using nitrogen-13 asa tracer. Based on measurements taken over 15 min from a rangeof external nitrate concentrations (0·2–250 mmolm–3), the kinetic parameters of influx, Imax and Km, werecalculated. Compared with plants grown in the presence of nitrate throughout,plants that had been starved of N for 3 d showed a significantlygreater value ofImax for 13N-nitrate influx (by a factor of1·4–1·8), but a similar value of Km (12–14mmol m–3). Pre-treating N-starved plants with nitratefor about 5 h further increased the subsequent rate of 13N-nitrateinflux, but had little effect in the unstarved controls. Allowingfor this induction of additional nitrate transport, the differencein rates of nitrate influx in control and N-starved plants wassufficient to account for the previously-observed differencein net uptake by the two groups of plants. In barley plants grown without any exposure to nitrate, butwith ammonium as N-source, both Imax and Km for subsequent 13N-nitrateinflux were significantly decreased (by about one-half) comparedwith the corresponding nitrate-grown controls. The importance of changes in the rate of influx in the regulationof net uptake of nitrate is discussed. Key words: Ion transport, nitrate, influx, kinetic parameters, N-deficiency  相似文献   

11.
Smith, J. R., Smith, F. A. and Walker, N. A. 1987. Potassiumtransport across the membrane of Chara. I. The relationshipbetween radioactive tracer influx and electrical conductance.—J.exp. Bot. 38:731–751. The 42K influx () and the electrical conductance (Gm) were measured simultaneously for the ‘membrane’of internodal cells of Chara australis as a function of theexternal [KCl] (K?. In bathing solutions of pH = 5?0, progressively increased from 20?5to 430?60 nmol m–2 s–1 and Gm increased from 0?36?0?02to 3?8?0?8 S m–2 when K? was increased from 0?1 to 10mol m–3. The resting membrane potential difference (p.d.)was approximately -135 mV for low K? and approached the expectedNernst equilibrium p.d. for K+ ions when K? > 1?0 mol m–3.Measurements of 36Cl influx suggested that the 42K influx waspredominantly electrogenic. The equivalent Goldman permeabilityto K+ ions (Pk) was approximately 20–30 nm s–1 anddid not vary significantly with increasing K?. The equivalentconductance attributable to the electrogenic transport of K+ ions was calculated from assuming passive, independent diffusionof K+ ions and the ratio was found to be typically close to one. It was also found that themagnitudes of and Gm measuredsimultaneously for each individual cell were also well correlatedfor K? 1?0 mol m–3, and that the slope of the line ofbest fit was close to one. For each K? it was found that theconductance not attributable to K+ translocation and presumablyassociated primarily with the transport of protons or theirequivalents was typically 0?2–0?5 Sm–2. For K? >1?0 mol m–3 the results indicated that the transport ofK+ ions was essentially independent, i.e. there was no evidencefor flux interactions. The results also indicated that the equivalentconductance derived from the measured 42K influx could usefullyindicate the fraction of the electrical conductance attributableto the translocation of K+ ions. Key words: Potassium, conductance, influx  相似文献   

12.
Planktonic primary production in the German Wadden Sea   总被引:8,自引:0,他引:8  
By combining weekly data of irradiance, attenuation and chlorophylla concentrations with photosynthesis (P) versus light intensity(E) curve characteristics, the annual cycle of planktonic primaryproduction in the estuarine part of the Northfrisian WaddenSea was computed for a 2 year period. Daily water column particulategross production ranged from 5 to 2200 mg C m–2 day–1and showed a seasonal pattern similar to chlorophyll a. Budgetcalculation yielded annual gross particulate primary productionsof 124 and 176 g C m–2 year–1 in 1995 and 1996,respectively. Annual amounts of phytoplankton respiration, calculatedaccording to a two-compartment model of Langdon [in Li,W.K.W.and Maestrini,S.Y. (eds), Measurement of Primary Productionfrom the Molecular to the Global Scale. International Councilfor the Exploration of the Sea, Copenhagen, 1993, pp. 20–36],and dissolved production in 1996, were both in the range of24–39 g C m–2 year–1. Annual total net productionwas thus very similar to particulate gross production (127 and177 g C m–2 year–1 in 1995 and 1996, respectively).Phytoplankton growth was low or even negative in winter. Inspring and summer, production/biomass (Pr/B) ratios varied from0.2 up to 1.7. Phytoplankton growth during the growth seasonalways surpassed average flushing time in the area, thus underliningthe potential of local phytoplankton bloom development in thispart of the Wadden Sea. The chlorophyll-specific maximum photosyntheticrate (PBmax) ranged from 0.8 to 9.9 mg C mg–1 Chl h–1and was strongly correlated with water temperature (r2 = 0.67).By contrast, there was no clear seasonal cycle in B, which rangedfrom 0.007 to 0.039 mg C mg–1 Chl h–1 (µmolphotons m–2 s–1)–1. Its variability was muchless than PBmax and independent of temperature. The magnitudeand part of the variability of PBmax and B are presumably causedby changes in species composition, as evidenced from the rangeof these parameters found among 10 predominant diatom speciesisolated from the Wadden Sea. The ratio of average light conditionsin the water column (Eav) to the light saturation parameterEk indicates that primary production in the Wadden Sea regionunder study is predominantly controlled by light limitationand that nutrient limitation was likely to occur for a few hoursper day only during 5 (dissolved inorganic nitrogen) to 10 (PO4,Si) weeks in the 2 year period investigated.  相似文献   

13.
Both predicted (incubator) and measured (in situ) 14C-assimilationrates were studied from February to November 1981 at three stationsin Boknafjorden, a deep silled fjord of western Norway. Sampleswere taken from different light depths within the euphotic zone.A high degree of conformity was found between the two approaches.Daily values of carbon assimilation integrated over the euphoticzone varied between 0.05 and 1.4 g C m–2. Yearly primaryproduction varied between stations from 82 to 112 g C m–2(120–148 g C m–2 when based on average light conditions).The light-saturation curve parameters B and PBmax ranged from0.0056 to 0.0537 mg C mg Chla–1 h–1 µE–1m2 and from 0.7 to 8.5 mg C mg Chla–1 h–2 (in situassimilation numbers ranged from 0.9 to 9.3 mg C mg Chla–1h–1) respectively, which compare well with those publishedfrom the northwestern side of the Atlantic. The overall importanceof light in controlling photosynthesis throughout the year wasrevealed by the light utilization index , estimated to be 0.43mg C mg Chla–1 E–1 m2. The maximum quantum yieldwas encountered on August 17, with 0.089 mol CE–1. Chla/Cratios above and below 0.010 were found to be typical for shade-and light-adapted cells respectively. Assimilation numbers andgrowth rates were linearly related only when considering light-adaptedcells. Consistent with the findings of this study, the applicabilityof IK, B and PBmax as indicators of light-shade adaptation propertiesshould be questioned. Maximum growth rates were encounteredduring an autumn bloom of the dinoflagellate Gyrodinium aureolum(1.0 doublings day–1), while 0.7–0.8 doublings day–1were found for a winter bloom (water temperature of 2°C)of the diatom Skeletonema costatum. No unambiguous temperatureeffect on assimilation number and growth of phytoplankton couldbe recognized in Boknafjorden. A tendency towards increasedassimilation numbers coinciding with increased water columnstability was revealed. The highest PBmax values were oftenencountered at almost undetectable nutrient concentrations.At least during summer this could be attributed to recyclingof nutrients by macro- and/or microzooplankton, responsiblefor a greater part of the primary production now being grazeddown. This study supports the convention that the depth of theeuphotic zone may extend considerably below the 1% light depth.  相似文献   

14.
Microplanktonic respiration rates were estimated in waters offthe coast of northern Chile (Antofagasta, 23°S) during ElNiño and pre-El Niño conditions. Three cruiseswere conducted during pre-El Niño summer (January/February1997), El Niño winter (July 1997) and El Niñosummer (January 1998). Oxygen consumption was estimated by theWinkler method using a semi-automatic photometric end-pointdetector. The ranges of microplanktonic respiration rates foundwere 0.11–21.15, 0.03–6.25 and 0.06–9.01 µmolO2 l–1 day–1 during pre-El Niño summer, ElNiño winter and El Niño summer, respectively.Significant differences were found between winter and summerrespiration rates (non-integrated and integrated). The meanintegrated respiration (mixed layer) for pre-El Niñosummer, El Niño winter and El Niño summer was95 ± 51 (SD) mmol O2 m–2 day–1, 50 ±23 (SD) mmol O2 m–2 day–1 and 63 ± 32 (SD)mmol O2 m–2 day–1, respectively. The strong seasonalsignal detected in microplanktonic integrated respiration inthe area seems to be characteristic of the pre-El Niño/ElNiño 1997–98 period. The integrated respirationrates found off Antofagasta are similar to reported values forthe upwelling area off Peru despite methodological differences.A positive significant correlation was found between respirationand water temperature (r = 0.76, P  相似文献   

15.
Phosphate Uptake in the Cyanobacterium Synechococcus R-2 PCC 7942   总被引:4,自引:0,他引:4  
Phosphate uptake rates in Synechococcus R-2 in BG-11 media (anitrate-based medium, not phosphate limited) were measured usingcells grown semi-continuously and in continuous culture. Netuptake of phosphate is proportional to external concentration.Growing cells at pHo 10 have a net uptake rate of about 600pmol m–2 s–1 phosphate, but the isotopic flux for32P phosphate was about 4 nmol m–2 s–1. There appearsto be a constitutive over-capacity for phosphate uptake. TheKm and Vmax, of the saturable component were not significantlydifferent at pHo 7.5 and 10, hence the transport system probablyrecognizes both H2PO4and HPO2–4. The intracellularinorganic phosphate concentration is about 3 to 10 mol m–3,but there is an intracellular polyphosphate store of about 400mol m–3. Intracellular inorganic phosphate is 25 to 50kJ mol–1 from electrochemical equilibrium in both thelight and dark and at pHo 7.5 and 10. Phosphate uptake is veryslow in the dark ( 100 pmol m–2 s–1) and is light-activated(pHo 7.51.3 nmol m–2 s–1, pHo 10600 pmol m–2s–1). Uptake has an irreversible requirement for Mg2+in the medium. Uptake in the light is strongly Na+-dependent.Phosphate uptake was negatively electrogenic (net negative chargetaken up when transporting phosphate) at pHo 7.5, but positivelyelectrogenic at pHo 10. This seems to exclude a sodium motiveforce driven mechanism. An ATP-driven phosphate uptake mechanismneeds to have a stoichiometry of one phosphate taken up perATP (1 PO4 in/ATP) to be thermodynamically possible under allthe conditions tested in the present study. (Received June 16, 1997; Accepted September 4, 1997)  相似文献   

16.
Net accumulation of Cl by intact barley plants was virtuallyeliminated in roots and reduced by 40% in shoots when externalmedia (0.5 mol m–3 CaSO4 plus 0–5 mol m–3KCI) were supplemented with 0.25 mol m Ca(NO3)2. Plasmalemma36Cl influx (oc) was shown to be insensitive to externalNO3- in plants which had previously been grown in solutionslacking –3, but oc became sensitive to NO3-after a lagperiod of 3–6 h. Kinetic analyses revealed that the inhibitionof 36C1 influx by external NO3- was complex. At 0.25mol m–3 NO3- the Vmax for Cl influx was reducedby greater than 50%, with insignificant effects upon Km. At0.5 mol m–3 NO3- there was no further effect upon Vmaxbut Km for influx increased from 38±5 mmol m–3to 116±26 mmol m–3. By contrast, Cl effluxwas found to be insensitive to external NO3-. A model for theregulation of Cl influx is proposed which involves bothnegative feedback effects from vacuolar NO3- +Cl) concentrationand (external) NO3- inhibition of Cl influx at the plasmalemma.These combined effects serve to discriminate against Claccumulation, favouring NO3- accumulation, when the latter ionis available. Such observations are inconsistent with recentproposals for the existence of bona fide homeostats for chlorideaccumulation in higher plants. Key words: Nitrate inhibition, Chloride influx, Barley  相似文献   

17.
Smith, J. R. 1987. Potassium transport across the membranesof Chara. II. 42K fluxes and the electrical current as a functionof membrane voltage.—J. exp. Bot. 38: 752–777. The current required to clamp the trans-membrane voltage ofinternodal cells of Chara australis at different levels wasmeasured simultaneously with either the 42K influx or efflux.Examination of the voltage-dependence of the ratio of the electricalcurrent to the unidirectional tracer fluxes yielded no evidenceof any amplification of the electrical driving force on theK+ ions. There was thus no evidence for the interaction of K+ions with themselves or any other species during their passageacross the membrane. These measurements allow the determinationof , the fraction of the electrical current carried by K+ ions.When the external [K+] = 10 mol m–3, the average valueof was 0?85 for Vm > –125 mV and 07?5 for Vm <–150 mV. When the external [K+] = 0?1 mol m–3, was 0?6 for Vm < –80 mV and 0?1 for Vm > –250mV. It was also found that the conductance associated with K+transport was inhibited by hyperpolarization. Key words: Potassium, conductance, flux-ratio  相似文献   

18.
K+ efflux from tobacco (Nicotiana tabacum L, cv. Samsun NN)leaf discs into the external medium was increased and the membranepotential (Em) changed in the positive direction with a changein pH from 8.0 to 4.0. Em was affected by the external concentrationof KCl, greatly decreasing with a change in concentration from1 mM to 100 mM. The equilibrium potential of the membrane forK+ (Ek) was decreased in a Nernst fashion with increasing externalconcentrations of KCl. Ek is more positive than Em above ca.50 µM KCl. Most of the experiments were carried out underconditions in which the difference between the electrochemicalpotential for K+ on the inside to the outside of the cell (µkis positive. Thus, K+ may passively flow to the outside of thecells accompanied by the depolarization of the membrane. Abscisic acid (ABA) increased the K+ efflux under conditionsof passive transport. K+ efflux was accelerated with an increasingconcentration of ABA, being maximal at 10–4 M–10–3M. This acceleration was due to the enhancement of the potassiummotive force (µk/F) which is the force causing the netpassive transport of K+. The membrane potential was decreasedfrom –205 mV to –170 mV by 2 x 10–4 M ABAwithin 10 min. The depolarization was not transient, being lostfor at least 3 hr. These results show that ABA accelerated passive K+ efflux, whichaccompanied depolarization of the membrane. (Received June 22, 1981; Accepted August 24, 1981)  相似文献   

19.
Inorganic phosphorus uptake and regeneration in the OkhotskSea waters were investigated in July–August 1994 withthe use of radioisotopic techniques. The rates of PO4-P uptakeby microplankton in the upper mixed layer were between 1.5 and6.6 µg P l-1 day-1 (average 2.75) in areas of diatom dominance,and between 0.68 and 1.68 µg P l-1 day-1 (average 1.16)in areas of intense warming and summer phytoplankton minimum.The residence time of PO4-P standing stock in water at differentstations varied between 1.5 and 24 days (mean 9 days). The shareof bacterioplankton contributing to total PO4-P uptake was 50%in areas of the summer phytoplankton minimum and 20–30%in areas of diatom dominance. The PO4-P regeneration rate wasmeasured first time experimentally in the temperate sea. Itsrates varied from 0.30 to 1.65 µg P l-1 day-1. In areasof diatom dominance, it compensated with 30–60% of PO4-Puptake. In zones of summer phytoplankton minimum and in thelayers of deep chlorophyll maxima at 10–25 m depths, thePO4-P regeneration rate often exceeded its uptake. Primary phytoplanktonproduction correlated well with PO4-P uptake values in the uppermixed layer, while no correlation was found between primaryproduction and the ambient PO4-P content in water.  相似文献   

20.
We recently demonstrated a role for altered mitochondrial bioenergetics and reactive oxygen species (ROS) production in mitochondrial Ca2+-sensitive K+ (mtKCa) channel opening-induced preconditioning in isolated hearts. However, the underlying mitochondrial mechanism by which mtKCa channel opening causes ROS production to trigger preconditioning is unknown. We hypothesized that submaximal mitochondrial K+ influx causes ROS production as a result of enhanced electron flow at a fully charged membrane potential (m). To test this hypothesis, we measured effects of NS-1619, a putative mtKCa channel opener, and valinomycin, a K+ ionophore, on mitochondrial respiration, m, and ROS generation in guinea pig heart mitochondria. NS-1619 (30 µM) increased state 2 and 4 respiration by 5.2 ± 0.9 and 7.3 ± 0.9 nmol O2·min–1·mg protein–1, respectively, with the NADH-linked substrate pyruvate and by 7.5 ± 1.4 and 11.6 ± 2.9 nmol O2·min–1·mg protein–1, respectively, with the FADH2-linked substrate succinate (+ rotenone); these effects were abolished by the mtKCa channel blocker paxilline. m was not decreased by 10–30 µM NS-1619 with either substrate, but H2O2 release was increased by 44.8% (65.9 ± 2.7% by 30 µM NS-1619 vs. 21.1 ± 3.8% for time controls) with succinate + rotenone. In contrast, NS-1619 did not increase H2O2 release with pyruvate. Similar results were found for lower concentrations of valinomycin. The increase in ROS production in succinate + rotenone-supported mitochondria resulted from a fully maintained m, despite increased respiration, a condition that is capable of allowing increased electron leak. We propose that mild matrix K+ influx during states 2 and 4 increases mitochondrial respiration while maintaining m; this allows singlet electron uptake by O2 and ROS generation. mitochondrial bioenergetics; heart mitochondria  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号