首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA.  相似文献   

2.
6-Hydroxydopamine (6-OHDA) causes selective degeneration of dopaminergic neurons in the rat brain and has been used to produce an animal model of Parkinsonism. Recently, a clonal line of immortalized dopamine (DA) neurons (1RB3AN27), which expresses varying levels of tyrosine hydroxylase, dopamine transporter, neuron specific enolase, and nestin, was established. These DA neurons reduce behavioral deficits in 6-OHDA-lesioned rats. The relative sensitivity of fetal and adult neurons to potential neurotoxins is not well defined. The availability of immortalized DA neurons provides a unique opportunity to compare the relative neurotoxicity of 6-OHDA in differentiated and undifferentiated DA neurons in vitro and identify neuroprotective agents. Our results showed that 6-OHDA treatment for 24 hr decreased the viability of undifferentiated and differentiated immortalized DA neurons in vitro, as determined by the MTT assay, and increased the rate of apoptosis in differentiated DA neurons. The differentiated DA neurons (IC50 = 33 microM) were about 2-fold more sensitive to 6-OHDA than undifferentiated DA neurons (IC50 = 75 microM) in cell culture. Similarly, the differentiated DA neurons were more sensitive to another neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), which is commonly used to induce Parkinsonism in animal models, than were the undifferentiated DA neurons in culture. Among growth factors tested, only glial cell line-derived neurotrophic factor (GDNF) partially protected differentiated DA neurons against 6-OHDA-induced toxicity. These results suggest that undifferentiated and differentiated immortalized DA neurons can be a useful experimental model to study relative sensitivity to neurotoxins and neuroprotective agents that could have relevance to fetal and adult neurons.  相似文献   

3.
6-Hydroxydopamine (6-OHDA)-induced loss of dopamine (DA) neurons has served to produce an animal model of DA neuron loss in Parkinson's disease. We report here the use of 6-OHDA to produce an in vitro model of this phenomena using dissociated cultures prepared from neonatal rat mesencephalon. Cultures were exposed to 6-OHDA (40-100 microm, 15 min) in an antioxidant medium, and DA and GABA neurons evaluated by immunocytochemistry. 6-OHDA induced morphological and biochemical signs of cell death in DA neurons within 3 h, followed by loss of tyrosine hydroxylase immunoreactive neurons within 2 days. In substantia nigra (SN) cultures, DA neurons were much more affected by 6-OHDA than were GABA neurons. In contrast, DA neurons from the ventral tegmental area were only lost at higher, non-specific concentrations of 6-OHDA. The effects of 6-OHDA on nigral DA neurons were blocked by inhibitors of high affinity DA transport and by z-DEVD-fmk (150 microm), a caspase inhibitor. Glial cell line-derived neurotrophic factor (GDNF) treatment reduced TUNEL labeling 3 h after 6-OHDA exposure, but did not prevent loss of DA neurons at 48 h. Thus, 6-OHDA can selectively destroy DA neurons in post-natal cultures of SN, acting at least in part by initiating caspase-dependent apoptosis, and this effect can be attenuated early but not late by GDNF.  相似文献   

4.
Parkinson''s disease (PD), the second most prevalent neurodegenerative disease after Alzheimer''s disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling.  相似文献   

5.
帕金森病模型大鼠脑内多巴胺与铁含量的关系   总被引:12,自引:2,他引:10  
Jiang H  Chen WF  Xie JX 《生理学报》2001,53(5):334-338
实验采用原子吸收分光光度法,快速周期伏安法,高效液相电化学检测等方法,研究以6-羟基多巴(6-OHDA)制备的帕金森病(PD)模型大鼠黑质内铁含量的变化。铁对多巴胺(DA)能神经元的直接毒性作用以及铁离子螯合剂甲磺酸去铁胺的神经保护作用。结果发现:(1)PD大鼠损毁侧黑质内铁含量为非标准PD大鼠的3倍左右;(2)PD大鼠损毁侧纹状体内铁含量无明显改变;(3)单纯注射6-OHDA的大鼠其损毁侧纹状体(CPu)DA的释放量和含量均明显降低;(4)侧脑室预先注射甲磺酸去铁胺,再重复上述实验,损毁侧CPu DA释放量和含量均无明显改变;(5)单侧黑质内注射40ug FeCl3后,大鼠损毁侧CPu内DA释放量和含量显著降低。上述结果提示,6-OHDA可导致CPu DA释放量及含量减少,此过程有铁的参与。由于铁可导致DA神经元死亡,因此铁含量的增加可能是DA含量减少的原因之一,甲磺酸去铁胺具有保护DA神经元的作用。  相似文献   

6.
Previous studies have suggested that R-apomorphine (R-APO), a non-selective dopamine (DA) receptor agonist, has neuroprotective effects in the experimental models of Parkinson's disease (PD). In this study, we investigated the effects of chronic, systemic treatment with R-APO in the firing activity of substantia nigra pars compacta (SNc) DA neurons in 6-hydroxydopamine (6-OHDA) partially lesioned rats. In the 6-OHDA-lesioned rats treated with vehicle, injection of 6-OHDA (20.1 microg) into the striatum produced a partial lesion causing 41% loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the SNc. In the partially lesioned rats, chronic, systemic treatment of R-APO (10 mg/kg/day, s.c., 11 days) attenuated loss of TH-ir neurons in the SNc. The partial lesion of the nigrostriatal pathway and R-APO treatment did not change the firing rate and firing pattern of DA neurons in the SNc of rats. In contrast, the R-APO treatment increased the number of spontaneously active DA neurons of the SNc in the partially lesioned rats, while the lesion decreased the number of spontaneously active DA neurons. In addition, the chronic R-APO treatment decreased the responsiveness of the DA neurons to intravenously administrated R-APO in the partially lesioned rats. These results indicate that chronic, systemic R-APO treatment has the neuroprotective effect, and reverses the decrease in the number of spontaneously active DA neurons in the SNc whereas the treatment induces a reduction in the sensitivity of DA receptors in the SNc to R-APO stimulation in this model.  相似文献   

7.
Convection enhanced delivery of 6-hydroxydopamine (6-OHDA) to the rat striatum results in a model of Parkinson’s disease. An important feature of this unilateral model is the progressive loss of dopaminergic (DA) neurons over the course of several weeks. To improve the understanding of this model, gene expression changes in the substantia nigra, which contains the DA neuron cell bodies, and the striatum, which contains the DA neuron synaptic terminals, were examined using DNA microarrays. Samples were collected and behavior was analyzed from vehicle and toxin treated animals at 3 days, 1 week, 2 weeks and 4 weeks following 6-OHDA treatment. Tissue DA content was determined and samples from animals which exhibited a substantial depletion of striatal DA were included in the subsequent gene expression analysis. The results of the gene expression analysis indicated that 6-OHDA elicits a vigorous inflammatory response, comprised of several distinct pathways, in the striatum at the earliest time point tested. In contrast, relatively few gene expression changes were observed in the SN at the 3-day time point. In both tissues examined there was evidence for a vigorous inflammatory response at the 1- and 2-week time points, which was substantially diminished by the 4-week time point. Inflammation plays a prominent role in the 6-OHDA model of Parkinson’s disease.  相似文献   

8.
6-Hydroxydopamine (6-OHDA) has been used for lesioning catecholaminergic neurons and attempted purging of neuroblastoma cells from hematopoietic stem cells in autologous bone marrow transplantation (ABMT). Neurotoxicity is mediated primarily by reactive oxygen species. In ABMT, 6-OHDA, as a purging agent, has been unsuccessful. At physiological pH it autooxidizes before targeted uptake, resulting in nonspecific cytotoxicity of nontarget cells. A catecholamine analogue, similar to 6-OHDA but with a lower rate of autooxidation enabling uptake by target cells, is thus required. Electron paramagnetic resonance spectra in this study show that 6-fluorodopamine (6-FDA) hydrolyzes slowly to 6-OHDA at physiological pH. Oxygen consumption, H(2)O(2), and quinone production are found to be intermediate between those of 6-OHDA and dopamine (DA). Relative neurotoxicity of these compounds was assessed by cell viability and DNA damage in the human neuroblastoma lines SH-SY5Y and SK-N-LO, which express and lack the noradrenaline transporter, respectively. Specific uptake of DA and 6-FDA by SH-SY5Y cells was demonstrated by competitive m-[(131)I]iodobenzylguanidine uptake inhibition. The competition by 6-OHDA was low owing to rapid autooxidation during incubation with equal toxicity toward both cell types. 6-FDA toxicity was preferential for SH-SY5Y cells and reduced in the presence of desipramine, a catecholamine uptake inhibitor. We demonstrate that 6-FDA cytotoxicity is more specific for cells expressing catecholamine reuptake systems than is 6-OHDA cytotoxicity.  相似文献   

9.
Kim TW  Moon Y  Kim K  Lee JE  Koh HC  Rhyu IJ  Kim H  Sun W 《PloS one》2011,6(10):e25346
Parkinson's disease (PD) is a common, late-onset movement disorder with selective degeneration of dopaminergic (DA) neurons in the substantia nigra (SN). Although the neurotoxin 6-hydroxydopamine (6-OHDA) has been used to induce progressive degeneration of DA neurons in various animal models of PD, the precise molecular pathway and the impact of anti-apoptotic treatment on this neurodegeneration are less understood. Following a striatal injection of 6-OHDA, we observed atrophy and progressive death of DA neurons in wild-type mice. These degenerating DA neurons never exhibited signs of apoptosis (i.e., caspase-3 activation and cytoplasmic release of cytochrome C), but rather show nuclear translocation of apoptosis-inducing factor (AIF), a hallmark of regulated necrosis. However, mice with genetic deletion of the proapoptotic gene Bax (Bax-KO) exhibited a complete absence of 6-OHDA-induced DA neuron death and nuclear translocation of AIF, indicating that 6-OHDA-induced DA neuronal death is mediated by Bax-dependent AIF activation. On the other hand, DA neurons that survived in Bax-KO mice exhibited marked neuronal atrophy, without significant improvement of PD-related behavioral deficits. These findings suggest that anti-apoptotic therapy may not be sufficient for PD treatment, and the prevention of Bax-independent neuronal atrophy may be an important therapeutic target.  相似文献   

10.
Parkinson's disease (PD) is a neurodegenerative disorder with motor symptoms caused by the loss of dopaminergic (DA) cells and consequently dopamine release in the nigrostriatal system. In vivo and in vitro 6-hydroxydopamine (6-OHDA) PD models are widely used to study the effect of striatal dopamine depletion as well as novel neuroprotective or restorative therapeutic strategies for PD. In the present study, we investigated in vitro the toxicity of 6-OHDA on DA neurons derived from E14 rat ventral mesencephalon (VM) and the neuroprotective efficiency of erythropoietin (Epo) on VM-derived cell cultures against 6-OHDA toxicity. Using E14 VM-derived DA-rich primary cultures, we could demonstrate that 6-OHDA toxicity works in a time-and concentration-dependent way, and leads to cell death not only in DA cells but also in non-DA cells in direct relation to concentration and incubation times. In addition, we found that 6-OHDA toxicity induces caspase-3 activation and an increment of intracellular reactive oxygen species (ROS) in VM-derived cultures. When 6-OHDA-treated VMs were cultured in the presence of the anti-apoptotic protein erythropoietin (Epo), the total neuronal population, including the DA neurons, was protected. However, untreated VM cultures exposed to Epo showed an increase in the total neuronal population, but not an additional increase in DA neuron cell number.These findings suggest that 6-OHDA toxicity is time and concentration-dependent and does not exclusively affect DA neurons. In high concentration and long incubation times, 6-OHDA influences the survival of other neuronal and non-neuronal cell populations derived from the VM cultures. 6-OHDA toxicity induces caspase-3 activation, indicating cell death via the apoptotic pathway which could be restricted or even prevented by pre-exposure to Epo, known to interact via the apoptotic pathway. Our results support and expand on previous findings showing that Epo is an interesting candidate molecule to mediate neuroprotective effects on DA neurons in PD. Furthermore, it could be used in promoting the survival of DA neurons after transplantation in clinical trials.  相似文献   

11.
This study compared the interaction between noradrenaline (NA) and dopamine (DA) mechanisms in the prefrontal (PFCX) and in the parietal (ParCX) and occipital (OccCX) cortex. The effect of reboxetine and desipramine, two NA transporter blockers, of mianserin, an antagonist of alpha2 and 5-HT2 receptors, and of clozapine, an atypical antipsychotic, on dialysate DA in the medial PFCX, ParCX and OccCX was studied. We also assessed the influence of a prior 6-hydroxydopamine (6-OHDA) lesion of the dorsal noradrenergic bundle (DNAB) on the effect of reboxetine and clozapine on dialysate DA in the PFCX and ParCX. Systemic administration of reboxetine and desipramine dose-dependently increased dialysate DA in the PFCX but not in the ParCX and OccCX. In contrast, mianserin and clozapine raised dialysate DA in the ParCX and OccCX to an even larger extent than in the PFCX. 6-OHDA lesions of DNAB abolished the increase of dialysate DA elicited by reboxetine in the PFCX and by clozapine both in the PFCX and in the ParCX. It is concluded that, although PFCX and ParCX/OccCX share the presence of a strong control of DA transmission by NA through alpha2 receptors, they differ in the extent to which DA is cleared from the extracellular compartment by uptake through the NA transporter. This process, although extensive in the PFCX, appears insignificant in the ParCX and OccCX, probably as a result of the higher ratio of NA to DA resulting in exclusion of DA from NA transporter.  相似文献   

12.
Studies involving estrogen treatment of ovariectomized rats or mice have attributed to this hormone a neuroprotective effect on the substantia nigra pars compacta (SNpc) neurons. We investigated the effect of estradiol replacement in ovariectomized rats on the survival of dopaminergic mesencephalic cell and the integrity of their projections to the striatum after microinjections of 1 microg of 6-hydroxydopamine (6-OHDA) into the right SNpc or medial forebrain bundle (MFB). Estradiol replacement did not prevent the reduction either in the striatal concentrations of DA and metabolites or in the number of nigrostriatal dopaminergic neurons following lesion with 1 microg of 6-OHDA into the SNpc. Nevertheless, estradiol treatment reduced the decrease in striatal DA following injection of 1 microg of 6-OHDA into the MFB. Results suggest therefore that estrogen protect nigrostriatal dopaminergic neurons against a 6-OHDA injury to the MFB but not the SNpc. This may be due to the distinct degree of lesions promoted in these different rat models of Parkinson's disease.  相似文献   

13.
Nigral depletion of the main brain antioxidant GSH is the earliest biochemical event involved in Parkinson's disease pathogenesis. Its causes are completely unknown but increasing number of evidence suggests that glutamate transporters [excitatory amino acid transporters (EAATs)] are the main route by which GSH precursors may enter the cell. In this study, we report that dopamine (DA) neurons, which express the excitatory amino acid carrier 1, are preferentially affected by EAAT dysfunction when compared with non-DA neurons. In rat embryonic mesencephalic cultures, l -trans-pyrrolidine-2,4-dicarboxylate, a substrate inhibitor of EAATs, is directly and preferentially toxic for DA neurons by decreasing the availability of GSH precursors and lowering their resistance threshold to glutamate excitotoxicity through NMDA-receptors. In adult rat, acute intranigral injection of l -trans-pyrrolidine-2,4-dicarboxylate induces a large regionally selective and dose-dependent loss of DA neurons and α-synuclein aggregate formation. These data highlight for the first time the importance of excitatory amino acid carrier 1 function for the maintenance of antioxidant defense in DA neurons and suggest its dysfunction as a candidate mechanism for the selective death of DA neurons such as occurring in Parkinson's disease.  相似文献   

14.
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.  相似文献   

15.
Freely moving rats were injected intraventricularly with 200 micrograms of 6-hydroxydopamine (6-OHDA) and examined for transport of this substance to the striatum, degradation of dopamine (DA) neurons, and functional recovery through microcomputer-controlled in vivo voltammetry. Approximately 6 min after the injection, 6-OHDA began to appear in the extracellular fluid of the contralateral striatum. It increased linearly and began to decrease exponentially with the termination of the injection. Two hours after the injection with 6-OHDA, a peak began to appear at the same potential as the peak of DA in the differential pulse voltammogram. It persisted for approximately 3 days. When the rats were injected intraperitoneally with L-3,4-dihydroxyphenylalanine (L-Dopa), the conversion of L-Dopa to DA was not found 1 week after the 6-OHDA injection, but was clearly recognized 5 months after the injection. When the rats were examined for behavioral changes arising from the L-Dopa injection, they were found to be clearly less hyperactive 5 months after the 6-OHDA injection than 1 week after.  相似文献   

16.
The phenomenon of aging is known to modulate many disease conditions including neurodegenerative ailments like Parkinson’s disease (PD) which is characterized by selective loss of dopaminergic neurons. Recent studies have reported on such effects, as calorie restriction, in modulating aging in living systems. We reason that PD, being an age-associated neurodegenerative disease might be modulated by interventions like calorie restriction. In the present study we employed the transgenic Caenorhabditis elegans model (Pdat-1::GFP) expressing green fluorescence protein (GFP) specifically in eight dopaminergic (DA) neurons. Selective degeneration of dopaminergic neurons was induced by treatment of worms with 6-hydroxy dopamine (6-OHDA), a selective catecholaminergic neurotoxin, followed by studies on effect of calorie restriction on the neurodegeneration. Employing confocal microscopy of the dopaminergic neurons and HPLC analysis of dopamine levels in the nematodes, we found that calorie restriction has a preventive effect on dopaminergic neurodegeneration in the worm model. We further studied the role of sirtuin, sir-2.1, in modulating such an effect. Studies employing RNAi induced gene silencing of nematode sir-2.1, revealed that presence of Sir-2.1 is necessary for achieving the protective effect of calorie restriction on dopaminergic neurodegeneration.Our studies provide evidence that calorie restriction affords, an sir-2.1 mediated, protection against the dopaminergic neurodegeneration, that might have implications for neurodegenerative Parkinson’s disease.  相似文献   

17.
Neurotransmitter:sodium symporters (NSS)(1) mediate sodium-dependent reuptake of neurotransmitters from the synaptic cleft and are targets for many psychoactive drugs. The crystal structure of the prokaryotic NSS protein, LeuT, was recently solved at high resolution; however, the mechanistic details of regulation of the permeation pathway in this class of proteins remain unknown. Here we combine computational modeling and experimental probing in the dopamine transporter (DAT) to demonstrate the functional importance of a conserved intracellular interaction network. Our data suggest that a salt bridge between Arg-60 in the N terminus close to the cytoplasmic end of transmembrane segment (TM) 1 and Asp-436 at the cytoplasmic end of TM8 is stabilized by a cation-pi interaction between Arg-60 and Tyr-335 at the cytoplasmic end of TM6. Computational probing illustrates how the interactions may determine the flexibility of the permeation pathway, and mutagenesis within the network and results from assays of transport, as well as the state-dependent accessibility of a substituted cysteine in TM3, support the role of this network in regulating access between the substrate binding site and the intracellular milieu. The mechanism that emerges from these findings may be unique to the NSS family, where the local disruption of ionic interactions modulates the transition of the transporter between the outward- and inward-facing conformations.  相似文献   

18.
The sat-1 transporter mediates sulfate/bicarbonate/oxalate anion exchange in vivo at the basolateral membrane of the kidney proximal tubule. In the present study, we show two renal cell lines [Madin-Darby canine kidney (MDCK) and porcine proximal tubular kidney (LLC-PK1) cells] that similarly target sat-1 exclusively to the basolateral membrane. To identify possible sorting determinants, we generated truncations of the sat-1 cytoplasmic COOH terminus, fused to enhanced green fluorescence protein (EGFP) or the human IL-2 receptor -chain (Tac) protein, and both fusion constructs were transiently transfected into MDCK cells. Confocal microscopy revealed that removal of the last three residues on the sat-1 COOH terminus, a putative PDZ domain, had no effect on basolateral sorting in MDCK cells or on sulfate transport in Xenopus oocytes. Removal of the last 30 residues led to an intracellular expression for the GFP fusion protein and an apical expression for the Tac fusion protein, suggesting that a possible sorting motif lies between the last 3 and 30 residues of the sat-1 COOH terminus. Elimination of a dileucine motif at position 677/678 resulted in the loss of basolateral sorting, suggesting that this motif is required for sat-1 targeting to the basolateral membrane. This posttranslational mechanism may be important for the regulation of sulfate reabsorption and oxalate secretion by sat-1 in the kidney proximal tubule. enhanced green fluorescence protein; Tac; polarized cells; sorting; transport  相似文献   

19.
20.
Dopamine (DA) in the medial prefrontal cortex (mPFC) has been implicated in the regulation of subcortical DA function. To further characterize the potential interaction between cortical and subcortical DA systems, the short- and long-term neurochemical consequences of 6-hydroxydopamine (6-OHDA) lesions of the mPFC of rats were investigated in the mPFC and in its subcortical target structures. 4 to 5, 10 to 12 and 32 to 36 days after infusion of 6-OHDA, DA was depleted to a larger extent than noradrenaline and serotonin. No lesion-induced changes of DA and its metabolites were detected in subcortical structures. These results show that prefrontal 6-OHDA lesions produce immediate and long lasting depletions of prefrontal monoamines, especially of DA, without increasing basal DA metabolism in the striatum and nucleus accumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号