首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Four major proteins designated DB1, DB2, DB3, and DB4 were isolated and characterized from the yam tuber Dioscorea batatas. The ratios of their yields were 20:50:20:10. DB1 was a mannose-binding lectin (20 kDa) consisting of 10-kDa subunits and was classified as the monocot mannose-binding lectin family. DB2, accounting for 50% of the total protein, was the storage protein, commonly called dioscorins consisting of a 31-kDa subunit. On the basis of amino acid sequence, DB2 was classified to be dioscorin A. DB3 was a maltose-binding lectin, having an apparent molecular mass of 120 kDa and composed of a 66-kDa subunit and two 31-kDa subunits (DB3S). The 66-kDa subunit was further composed of two 31-kDa subunits (DB3L) cross-linked by disulfide bonds. DB3L and DB3S (242 and 241 amino acid residues, respectively) were homologous with each other with 72% sequence identity. They showed a sequence homology to dioscorin B and dioscorin A from Dioscorea alata, with 90 and 93% identity, respectively, and to carbonic anhydrase from Arabidopsis thaliana with about 45% identity. DB3S had one intrachain disulfide bond located at Cys(28)-Cys(187), whereas DB3L had one interchain disulfide bond (Cys(40)-Cys(40)') in addition to the intrachain disulfide bond (Cys(28)-Cys(188)) to form a 66-kDa subunit. DB1 and DB3 agglutinated rabbit erythrocytes at 2.7 and 3.9 microg/ml, respectively. Despite the structural homology between DB2 and DB3, DB2 had no lectin activity. The 66-kDa subunit itself revealed the full hemagglutinating activity of DB3, indicating that DB3L but not DB3S was responsible for the activity. The hemagglutinating activity of DB3 required Ca(2+) ions and was exclusively inhibited by maltose and oligomaltoses (e.g. maltopentaose and maltohexaose) but not by d-glucose. DB3 could not be classified into any known plant lectin family. DB4 was a chitinase, homologous to an acidic chitinase from Dioscorea japonica. DB1, DB2, and DB3 did not show any activity of carbonic anhydrase, amylase, or trypsin inhibitor activity. These results show that two of the four major proteins isolated from the yam tubers D. batatas have unique lectin activities.  相似文献   

3.
W R Odom  T M Bricker 《Biochemistry》1992,31(24):5616-5620
The structural organization of photosystem II proteins has been investigated by use of the zero-length protein cross-linking reagent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and monoclonal and polyclonal antibody reagents. Photosystem II membranes were treated with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide which cross-links amino groups to carboxyl groups which are in van der Waals contact. This treatment did not affect the oxygen evolution rates of these membranes and increased the retention of oxygen evolution after CaCl2 washing. Analysis of the proteins cross-linked by this treatment indicated that two cross-linked species with apparent molecular masses of 95 and 110 kDa were formed which cross-reacted with antibodies against both the 33-kDa manganese-stabilizing protein and the chlorophyll protein CPa-1. Cleavage of the 110-kDa cross-linked species with cyanogen bromide followed by N-terminal sequence analysis was used to identify the peptide fragments of CPa-1 and the manganese-stabilizing protein which were cross-linked. Two cyanogen bromide fragments were identified with apparent molecular masses of 50 and 25 kDa. N-Terminal sequence analysis of the 50-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa fragment of CPa-1 and the intact manganese-stabilizing protein. This strongly suggests that the manganese-stabilizing protein is cross-linked to the large extrinsic loop domain of CPa-1. N-Terminal analysis of the 25-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa peptide of CPa-1 and the N-terminal 8-kDa peptide of the manganese-stabilizing protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The aim of this study was to correlate the supramolecular organization of conglutinin (BK) with its primary and tertiary structure and to gain more knowledge of functionally important regions of the molecule. BK analyzed by SDS-PAGE under standard reducing conditions (40 mM DTT) showed a major band at 43 kDa and weaker bands at 86 and 180 kDa. In contrast, reduction with 6-50 mM L-cysteine resulted in 37-kDa subunits indicating the presence of intrachain disulfide bonds within this subunit. Hydroxylamine treatment indicated presence of ester bonds in the 86- and 180-kDa subunits. Collagenase digestion and SDS-PAGE under reducing and nonreducing conditions resulted in bands of 20 and 15 kDa, respectively, indicating the presence of intrachain, rather than interchain, disulfide bonds in the carboxy terminus. Deglycosylation and glycan differentiation analysis of BK revealed the presence of O-linked glycans of GalNAc and alpha (2-3) linked sialic acid type, whereas no N-linked glycans were demonstrated. Binding experiments with GlcNAc-gold suggested that multivalency is required for carbohydrate binding to BK. Electron microscopy showed mostly tetramers, 96 nm in diameter, but also mono-, di-, and trimers were seen. The tetramers consisted of 40-nm strands, each with a peripheral globular head composed of subunits and connected to a common central lobe built from four ring-formed structures. The strands occasionally showed two bends, one close to the central lobe and another 25 nm from the lobe. These bends most likely correspond to the interrupted Gly-Xaa-Yaa repeats at residues 38 and 123.  相似文献   

5.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

6.
Characterization of the subunits of beta-conglycinin   总被引:4,自引:0,他引:4  
Four subunits of beta-conglycinin were purified from soybean cultivar CX 635-1-1-1, and were designated alpha, alpha', beta, and beta' in accordance with nomenclature proposed by Thanh and Shibasaki [(1977) Biochim. Biophys. Acta 490, 370-384]. Of these subunits, beta' has not previously been reported or characterized. Consistent with the low levels of methionine in these proteins, cyanogen bromide cleavage of alpha', alpha, and beta' subunits produced only a few fragments. The beta subunit contains no methionine and was not cleaved by cyanogen bromide. The NH2-terminal amino acid sequences of the alpha and alpha' subunits are homologous, and each has valine at its amino terminus. The beta subunit has a very different NH2-terminal sequence from those of the alpha and alpha' subunits, and has leucine at its amino terminus. The NH2-terminal sequence of the beta' subunit could not be determined, as it appeared to be blocked to Edman degradation. Although alpha and alpha' subunits have similar NH2-terminal sequences, they differ in the number of methionine residues and so yielded different numbers of cyanogen bromide fragments. Two cyanogen bromide fragments (CB-1 and CB-2) were purified from the alpha subunit. CB-1 originated from the NH2-terminal end of the subunit. The amino acid sequence of CB-2 was identical to that predicted from the nucleotide sequence of cDNA clone pB36. The insert in pB36 encoded 216 amino acids from the COOH-terminal end of the alpha subunit and contained a 138-bp trailer sequence which was followed by a poly-(A) tail. Maps showing the relative positions of methionine residues and carbohydrate moieties in the alpha and alpha' subunits were drawn, based on primary sequence data, and the size and carbohydrate content of the CNBr fragments derived from the subunits.  相似文献   

7.
A 31-kilodalton (kDa) protein was solubilized from the peptidoglycan (PG) fraction of Legionella pneumophila after treatment with either N-acetylmuramidase from the fungus Chalaropsis sp. or with mutanolysin from Streptomyces globisporus. The protein exhibited a ladderlike banding pattern by autoradiography when radiolabeled [( 35S]cysteine or [35S]methionine) PG material was extensively treated with hen lysozyme. The banding patterns ranging between 31 and 45 kDa and between 55 and 60 kDa resolved as a single 31-kDa protein when the material was subsequently treated with N-acetylmuramidase. Analysis of the purified 31-kDa protein for diaminopimelic acid by gas chromatography revealed 1 mol of diaminopimelic acid per mol of protein. When outer membrane PG material containing the major outer membrane porin protein was treated with N-acetylmuramidase or mutanolysin, both the 28.5-kDa major outer membrane protein and the 31-kDa protein were solubilized from the PG material under reducing conditions. In the absence of 2-mercaptoethanol, a high-molecular-mass complex (100 kDa) was resolved. The results of this study indicate that a 31-kDa PG-bound protein is a major component of the cell wall of L. pneumophila whose function may be to anchor the major outer membrane protein to PG. Finally, a survey of other Legionella species and other serogroups of L. pneumophila suggested that PG-bound proteins may be a common feature of this genus.  相似文献   

8.
The terminal DNA restriction fragments (PstI-D and -B) of Pseudomonas aeruginosa bacteriophage D3 were ligated, cloned, and sequenced. Of the nine open reading frames in this 8.3-kb fragment, four were identified as encoding large-subunit terminase, portal, ClpP protease, and major head proteins. The portal and capsid proteins showed significant homology with proteins of the lambdoid coliphage HK97. Phage D3 was purified by CsCl equilibrium gradient centrifugation (rho = 1.533 g/ml), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed six proteins with molecular masses of 186, 91, 79, 70, 45, and 32 kDa. The pattern was unusual, since a major band corresponding to the expected head protein (43 kDa) was missing and a significant amount of the protein was retained in the stacking gel. The amino terminus of the 186-kDa protein was sequenced, revealing that the D3 head is composed of cross-linked 31-kDa protein subunits, resulting from the proteolysis of the 43-kDa precursor. This is identical to the situation observed with coliphage HK97.  相似文献   

9.
Nine glycoproteins (gB, gC, gD, gE, gG, gH, gI, gK, and gL) have been identified in bovine herpesvirus 1 (BHV-1). gM has been identified in many other alpha-, beta-, and gammaherpesviruses, in which it appears to play a role in membrane penetration and cell-to-cell fusion. We sought to express BHV-1 open reading frame UL10, which encodes gM, and specifically identify the glycoprotein. We corrected a frameshift error in the published sequence and used the corrected sequence to design coterminal peptides from the C terminus. These were expressed as glutathione S-transferase fusion proteins in Escherichia coli. The fusion protein containing the 63 C-terminal amino acids from the corrected gM sequence engendered antibodies that immunoprecipitated a 30-kDa protein from in vitro translation reactions programmed with the UL10 gene. Proteins immunoprecipitated by this antibody from virus-infected cells ran at 36 and 43 kDa in reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 43 and 48 kDa in nonreducing SDS-PAGE. Only the larger of the pair was present in virions. A 7-kDa protein was released from gM by reducing agents. The 7-kDa protein was not recognized in Western blots probed with the anti-gM antibody but reacted specifically with antibodies prepared against BHV-1 UL49.5, previously reported to be a 9-kDa protein associated with an unidentified 39-kDa protein (X. Liang, B. Chow, C. Raggo, and L. A. Babiuk, J. Virol. 70:1448–1454, 1996). This is the first report of a small protein covalently bound to any herpesvirus gM. Similar patterns of hydrophobic domains and cysteines in all known gM and UL49.5 homologs suggest that these two proteins may be linked by disulfide bonds in all herpesviruses.  相似文献   

10.
Binding of calpain fragments to calpastatin   总被引:1,自引:0,他引:1  
Their cDNA-derived amino acid sequences predict that the 80-kDa subunits of the micromolar and millimolar Ca(2+)-requiring forms of the Ca(2+)-dependent proteinase (mu- and m-calpain, respectively) each consist of four domains and that the 28-kDa subunit common to both mu- and m-calpain consists of two domains. The calpains were allowed to autolyze to completion, and the autolysis products were separated and were characterized by using gel permeation chromatography, calpastatin affinity chromatography, and sequence analysis. Three major fragments were obtained after autolysis of either calpain. The largest fragment (34 kDa for mu-calpain, 35 kDa for m-calpain) contains all of domain II, the catalytic domain, plus part of domain I of the 80-kDa subunit of mu- or m-calpain. This fragment does not bind to calpastatin, a competitive inhibitor of the calpains, and has no proteolytic activity in either the absence or presence of Ca2+. The second major fragment (21 kDa for mu-calpain and 22 kDa for m-calpain) contains domain IV, the calmodulin-like domain, plus approximately 50 amino acids from domain III of the 80-kDa subunit of mu- or m-calpain. The third major fragment (18 kDa) contains domain VI, the calmodulin-like domain of the 28-kDa subunit. The second and third major fragments bind to a calpastatin affinity column in the presence of Ca2+ and are eluted with EDTA. The second and third fragments are noncovalently bound, so the 80- and 28-kDa subunits of the intact calpain molecules are noncovalently bound at domains IV and VI. After separation in 1 M NaSCN, the 28-kDa subunit binds completely to calpastatin, approximately 30-40% of the 80-kDa subunit of mu-calpain binds to calpastatin, and the 80-kDa subunit of m-calpain does not bind to calpastatin in the presence of 1 mM Ca2+.  相似文献   

11.
Chicken α- and β-lipovitellin are derived from parent vitellogenin proteins and contain four subunits (125, 80, 40, and 30 kDa) and two subunits (125 and 30 kDa), respectively. Metal analyses demonstrate both are zinc proteins containing 2.1 ± 0.2 mol of zinc/275 kDa per α-lipovitellin and 1.4 ± 0.2 mol of zinc/155 kDa per β-lipovitellin, respectively. The subunits of β-lipovitellin, Lv 1 (MW 125 kDa) and Lv 2 (MW 30 kDa), are separated by gel exclusion chromatography in the presence of zwittergent 3–16. Zinc elutes with Lv 1, suggesting that this subunit binds zinc in the absence of Lv 2. The subunits of α- and β-lipovitellin were separated by SDS-PAGE, digested with trypsin, and mapped by reverse-phase HPLC. The peptide maps of the 125-kDa subunits from α- and β-lipovitellin are essentially identical. Similar results are obtained for the 30-kDa subunits of both lipovitellins. The sequences of five and four peptides of the 125-kDa subunit of α- and β-Lv, respectively, and two peptides of the 30-kDa subunit of α- and β-lipovitellin were determined and match those predicted from the gene for vitellogenin II, Vtg II. Comparison of the amino acid composition of the 125- and 30-kDa subunits of α- and β-lipovitellin support the conclusion that they originate from the same gene. The sequences of peptides from the 80- and 40-kDa subunits of α-lipovitellin have not been found in the NCBI nonredundant data bank. The 27-amino acid N-terminal sequence of the 40-kDa protein is 56% similar to the last third of the Lv 1-coding region of the Vtg II gene, suggesting it may come from an analogous region of the Vtg I gene. We propose a scheme for the precursor—product relationship of Vtg I.  相似文献   

12.
The endocytic hyaluronan (HA) receptor of liver sinusoidal endothelial cells (LECs) is responsible for the clearance of HA and other glycosaminoglycans from the circulation in mammals. We report here for the first time the purification of this liver HA receptor. Using lectin and immuno-affinity chromatography, two HA receptor species were purified from detergent-solubilized membranes prepared from purified rat LECs. In nonreducing SDS-polyacrylamide gel electrophoresis (PAGE), these two proteins migrated at 175- and approximately 300 kDa corresponding to the two species previously identified by photoaffinity labeling of live cells as the HA receptor (Yannariello-Brown, J., Frost, S. J., and Weigel, P. H. (1992) J. Biol. Chem. 267, 20451-20456). These two proteins co-purify in a molar ratio of 2:1 (175:300), and both proteins are active, able to bind HA after SDS-PAGE, electrotransfer, and renaturation. After reduction, the 175-kDa protein migrates as a approximately 185-kDa protein and is not able to bind HA. The 300-kDa HA receptor is a complex of three disulfide-bonded subunits that migrate in reducing SDS-PAGE at approximately 260, 230, and 97 kDa. These proteins designated, respectively, the alpha, beta, and gamma subunits are present in a molar ratio of 1:1:1 and are also unable to bind HA when reduced. The 175-kDa protein and all three subunits of the 300-kDa species contain N-linked oligosaccharides, as indicated by increased migration in SDS-PAGE after treatment with N-glycosidase F. Both of the deglycosylated, nonreduced HA receptor proteins still bind HA.  相似文献   

13.
Ferritin is a multimeric iron storage protein composed of 24 subunits. Ferritin purified from dried soybean seed resolves into two peptides of 26.5 and 28 kDa. To date, the 26.5-kDa subunit has been supposed to be generated from the 28-kDa subunit by cleavage of the N-terminal region. We performed amino acid sequence analysis of the 28-kDa subunit and found that it had a different sequence from the 26.5-kDa subunit, thus rendering it novel among known soybean ferritins. We cloned a cDNA encoding this novel subunit from 10-day-old seedlings, each of which contained developed bifoliates, an epicotyl and a terminal bud. The 26.5-kDa subunit was found to be identical to that identified previously lacking the C-terminal 16 residues that correspond to the E helix of mammalian ferritin. However, the corresponding region in the 28-kDa soybean ferritin subunit identified in this study was not susceptible to cleavage. We present evidence that the two different ferritin subunits in soybean dry seeds show differential sensitivity to protease digestions and that the novel, uncleaved 28-kDa ferritin subunit appears to stabilize the ferritin shell by co-existing with the cleaved 26.5-kDa subunit. These data demonstrate that soybean ferritin is composed of at least two different subunits, which have cooperative functional roles in soybean seeds.  相似文献   

14.
We have isolated a full-length mouse cDNA encoding a lysine-rich protein of 1,131 amino acids with a calculated molecular mass of 126 kDa. The protein binds in a sequence-unspecific manner to DNA, is localized exclusively in the nucleus, and contains a putative ATP binding site and a stretch of 80 amino acids with homology to the carboxy terminus of prokaryotic DNA ligases. On the basis of the following facts, we conclude that the isolated cDNA encodes the 140-kDa subunit of mouse replication factor C (mRFC140). (i) The sequence around the ATP binding site shows significant homology to three small subunits of human replication factor C. (ii) Polyclonal antibodies raised against the protein encoded by this cDNA cross-react with the 140-kDa subunit of purified human replication factor C (hRFC140) and recognize in mouse cell extracts an authentic protein with an apparent molecular mass of 130 kDa. (iii) Sequence comparison with a human cDNA isolated by using tryptic peptide sequence information from purified hRFC140 revealed 83% identity of the encoded proteins. The mRFC140 gene is ubiquitously expressed, and two mRNAs approximately 5.0 and 4.5 kb long have been detected. The gene was mapped by in situ hybridization to mouse chromosome 5, and its human homolog was mapped to chromosome 4 (p13-p14).  相似文献   

15.
In a previous study, we purified three selenium-binding proteins (molecular masses 56, 14, and 12 kDa) from mouse liver using column chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The aim of the present study was to determine the amino acid sequence of the 14-kDa protein thereby establishing any relationship with known proteins. Although the amino terminus of the 14-kDa protein was blocked, separate in situ digestions of the protein with endoproteinases Glu-c and Lys-c gave overlapping peptides that provided a continuous sequence of 93 amino acids. This sequence exhibited a 92.5% sequence homology with rat liver fatty acid-binding protein. In situ enzymatic digestion and partial sequencing of a 12-kDa selenium-binding protein revealed identical homology to the 14-kDa protein. The 14-kDa protein bound specifically to an oleate-affinity column from which the protein and 75Se coeluted. Delipidation or sodium dodecyl sulfate treatment failed to remove 75Se from the protein, indicating that the selenium moiety was tightly bound to the protein. These observations confirm that the mouse liver selenium-binding 14-kDa protein is a fatty acid-binding protein. The nature of the selenium linkage to the protein still needs to be explored.  相似文献   

16.
Heavy riboflavin synthase is a 1,000,000-Da protein catalyzing the last two reactions of riboflavin biosynthesis. The enzyme complex consists of 60 beta subunits (Mr = 16,200) and approximately three alpha subunits (Mr = 23,000). beta subunits were isolated and cleaved with cyanogen bromide. Fragments were isolated and further digested with trypsin and staphylococcal protease. Peptides were isolated by high performance liquid chromatography. Sequences were determined by automated liquid-phase Edman degradation. The complete sequence of the beta subunit (154 amino acids) was established by direct sequencing of the NH2 terminus, sequencing of overlapping peptides, and carboxypeptidase degradation of the COOH terminus. The sequence shows no detectable homologies to other proteins. A computer prediction of secondary structure elements indicates 34% alpha helix and 30% beta sheet.  相似文献   

17.
Although most L-type calcium channel alpha(1C) subunits isolated from heart or brain are approximately 190-kDa proteins that lack approximately 50 kDa of the C terminus, the C-terminal domain is present in intact cells. To test the hypothesis that the C terminus is processed but remains functionally associated with the channels, expressed, full-length alpha(1C) subunits were cleaved in vitro by chymotrypsin to generate a 190-kDa C-terminal truncated protein and C-terminal fragments of 30-56 kDa. These hydrophilic C-terminal fragments remained membrane-associated. A C-terminal proline-rich domain (PRD) was identified as the mediator of membrane association. The alpha(1C) PRD bound to SH3 domains in Src, Lyn, Hck, and the channel beta(2) subunit. Mutant alpha(1C) subunits lacking either approximately 50 kDa of the C terminus or the PRD produced increased barium currents through the channels, demonstrating that these domains participate in the previously described (Wei, X., Neely, a., Lacerda, A. E. Olcese, r., Stefani, E., Perez-Reyes, E., and Birnbaumer, L. (1994) J. Biol. Chem. 269, 1635-1640) inhibition of channel function by the C terminus.  相似文献   

18.
Insulin and insulinlike growth factor 1 (IGF-1) receptors are present in brain, yet their function remains obscure. Expression of these tyrosine kinase-bearing growth factor receptors during rat brain development was examined by using three antipeptide antibodies directed against epitopes in the beta subunits (AbP2, AbP4, and AbP5). All three antibodies recognized both insulin and IGF-1 receptors. Membranes were prepared from fetal brains (14 to 21 days of gestation), neonatal brain (postnatal day 1), and adult brain. Immunoblot analyses using AbP4 and AbP5 revealed a 92-kilodalton (kDa) protein that corresponded to the beta subunit of the insulin and IGF-1 receptors. Densitometric scanning of immunoblots indicated that receptor proteins were 4- to 10-fold more abundant in fetal brain membranes than in membranes from adult brain. Expression was highest during 16 to 18 days of gestation and declined thereafter to the relatively low level found in adult brain. Immunoblot analyses with AbP2 as well as ligand-activated receptor autophosphorylation revealed an additional protein of 97 kDa. This protein was phosphorylated in response to IGF-1 and was not directly recognized by AbP4 or AbP5. The covalent association of the 97-kDa protein with the 92-kDa beta subunit was indicated by the ability of AbP4 and AbP5 to immunoprecipitate both proteins under nonreducing conditions but only the 92-kDa protein after reduction. In contrast, AbP2 immunoprecipitated both proteins regardless of their association. This immunospecificity remained unchanged after deglycosylation of the isolated proteins. Two-dimensional tryptic phosphopeptide analysis showed that the 92- and 97-kDa subunits of the IGF-1 receptor are related but distinct proteins. Taken together, the data suggest that the 92- and 97-kDa subunits differ in primary amino acid sequence. Thus, two distinct beta subunits may be present in a single IGF-1 receptor in brain. These subunits have in common an epitope recognized by an antibody to the tyrosine kinase domain (AbP2) but differ in regions thought to be important in receptor kinase regulation and signal transduction.  相似文献   

19.
Bacillus sphaericus 2362 produces a binary toxin consisting of 51- and 42-kDa proteins, both of which are required for toxicity to mosquito larvae. Upon ingestion by larvae, these proteins are processed to 43 and 39 kDa, respectively. Using site-directed mutagenesis, we have obtained N- and C-terminal deletions of the 51-kDa protein and expressed them in B. subtilis by using the subtilisin promoter. Removal of 21 amino acids from the N terminus and 53 amino acids from the C terminus resulted in a protein with the same electrophoretic properties as the 43-kDa degradation product which accumulates in the guts of mosquito larvae. This protein was toxic only in the presence of the 42-kDa protein. A deletion of 32 amino acids at the N terminus combined with a 53-amino-acid deletion at the C terminus resulted in a protein which retained toxicity. Toxicity was lost upon a further deletion of amino acids at potential chymotrypsin sites (41 at the N terminus, 61 at the C terminus). Comparison of the processing of the 51- and the 42-kDa proteins indicated that in spite of their sequence similarity proteolysis occurred at different sites.  相似文献   

20.
Interaction of the Bacillus sphaericus mosquito larvicidal proteins   总被引:8,自引:0,他引:8  
Genes for 51.4- and 41.9-kDa insecticidal proteins of Bacillus sphaericus were separately cloned and expressed in Escherichia coli. Both proteins were required for toxicity. Approximately equal numbers of cells containing the 51.4- and 41.9-kDa proteins produced the greatest toxicity; excess 41.9-kDa protein did not affect toxicity, whereas excess 51.4-kDa protein reduced activity. Larvae were killed when 41.9-kDa protein was fed up to 24 h after the 51.4-kDa protein, but not when the order of feeding was reversed. Radiolabelled toxins bound in approximately equal amounts to the gastric caecum and posterior midgut of Culex quinquefasciatus larvae. Radiolabelled 51.4-kDa protein was rapidly degraded by ca. 12-13 kDa in the larval gut, while 41.9-kDa protein was degraded by 1-2 kDa. Nonreduced toxin extracted from B. sphaericus produced a band on SDS-PAGE of ca. 68-74 kDa that contained both 51.4- and 41.9-kDa proteins based on sequence analysis, and a band of ca. 51 kDa that contained primarily 41.9-kDa protein. Escherichia coli containing 51.4-kDa protein enhanced toxicity of the latter eluted SDS-PAGE band. These proteins may associate very strongly, and trace amounts of 51.4-kDa protein in preparations of 41.9-kDa protein from B. sphaericus may be responsible for the previously reported toxicity of the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号