首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to test the hypothesis that both growth differential factor 9 (GDF9) and bone morphogenetic protein (BMP15; also known as GDF9B) are essential for normal ovarian follicular development in mammals with a low ovulation rate phenotype. Sheep (9-10 per group) were immunized with keyhole limpet hemocyanin (KLH; control), a GDF9-specific peptide conjugated to KLH (GDF9 peptide), a BMP15-specific peptide conjugated to KLH (BMP15 peptide), or the mature region of oBMP15 conjugated to KLH (oBMP15 mature protein) for a period of 7 mo and the effects of these treatments on various ovarian parameters such as ovarian follicular development, ovulation rate, and plasma progesterone concentrations evaluated. Also in the present study, we examined, by immunohistochemistry, the cellular localizations of GDF9 and BMP15 proteins in the ovaries of lambs. Both GDF9 and BMP15 proteins were localized specifically within ovarian follicles to the oocyte, thereby establishing for the sheep that the oocyte is the only intraovarian source of these growth factors. Immunization with either GDF9 peptide or BMP15 peptide caused anovulation in 7 of 10 and 9 of 10 ewes, respectively, when assessed at ovarian collection. Most ewes (7 of 10) immunized with oBMP15 mature protein had a least one observable estrus during the experimental period, and ovulation rate at this estrus was higher in these ewes compared with those immunized with KLH alone. In both the KLH-GDF9 peptide- and KLH-BMP15 peptide-treated ewes, histological examination of the ovaries at recovery (i.e., approximately 7 mo after the primary immunization) showed that most animals had few, if any, normal follicles beyond the primary (i.e., type 2) stage of development. In addition, abnormalities such as enlarged oocytes surrounded by a single layer of flattened and/or cuboidal granulosa cells or oocyte-free nodules of granulosa cells were often observed, especially in the anovulatory ewes. Passive immunization of ewes, each given 100 ml of a pool of plasma from the GDF9 peptide- or BMP15 peptide-immunized ewes at 4 days before induction of luteal regression also disrupted ovarian function. The ewes given the plasma against the GDF9 peptide formed 1-2 corpora lutea but 3 of 5 animals did not display normal luteal phase patterns of progesterone concentrations. The effect of plasma against the BMP15 peptide was more dramatic, with 4 of 5 animals failing to ovulate and 3 of 5 ewes lacking surface-visible antral follicles at laparoscopy. By contrast, administration of plasma against KLH did not affect ovulation rate or luteal function in any animal. In conclusion, these findings support the hypothesis that, in mammals with a low ovulation rate phenotype, both oocyte-derived GDF9 and BMP15 proteins are essential for normal follicular development, including both the early and later stages of growth.  相似文献   

2.
Bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9 (GDF-9) are oocyte-secreted factors that play essential roles in human folliculogenesis and ovulation. Their bioactivity is tightly regulated through phosphorylation, likely to occur within the Golgi apparatus of the secretory pathway. Here we show that Golgi apparatus casein kinase (G-CK) catalyzes the phosphorylation of rhBMP-15 and rhGDF-9. rhBMP-15, in particular, is an excellent substrate for G-CK. In each protein a single residue is phosphorylated by G-CK, corresponding to the serine residue at the sixth position of the mature region of both rhBMP-15 and rhGDF-9, whose phosphorylation is required for biological activity.  相似文献   

3.
4.

Background  

It has been reported that calf oocytes are less developmentally competent than oocytes obtained from adult cows. Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) play critical roles in folliculogenesis, follicular development and ovulation in mammalian ovaries. In the present study, we attempted to compare the expression patterns of BMP15 and GDF9 in the cells of calf and cow ovaries to determine a relationship between the level of these genes and the low developmental competence of calf oocytes.  相似文献   

5.
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) belong to the TGF-beta superfamily and are involved in the regulation of folliculogenesis. Though there are many reports concerning the expression and regulation of GDF9 in the process of oocyte maturation, expression of BMP15 during oocyte maturation is still not clearly understood. It has been reported that BMP15 and GDF9 expression is important in folliculogeneiss and that the regulation of these two proteins is complex and species-specific. In this report, we investigated the expression of BMP15 and GDF9 genes during in vitro maturation (IVM) at 0, 6, 12, 18, 24, 30, 36, 42 and 48 h for porcine oocytes. Porcine GDF9 gene was found to be highly expressed in immature oocytes and declined slowly during the oocyte maturation process. BMP15mRNA and its encoded protein were expressed at low levels in immature oocytes and increased to the highest level at 18 h of IVM, which coincides with the time of cumulus cell expansion. Thus, these two genes were differentially expressed during the oocyte maturation process and BMP15 is specifically expressed during cumulus cell expansion in porcine oocytes.  相似文献   

6.
Immunization of ewes against growth differentiation factor 9 (GDF9) or bone morphogenetic protein 15 (BMP15) can lead to an increased ovulation rate; however, it is not known whether normal pregnancies occur following such treatments. The aims of the present study were to determine the effects of a short-term immunization regimen against BMP15 and GDF9 on ovulation rate, fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, and the ability of immunized ewes to carry a pregnancy to term. Ewes were given a primary and booster immunization against keyhole limpet hemocyanin (KLH; control, n = 50), a GDF9-specific peptide conjugated to KLH (GDF9, n = 30), or a BMP15-specific peptide conjugated to KLH (BMP15, n = 30). The estrous cycles of all ewes were synchronized, and ewes were joined with fertile rams approximately 14 days after the booster immunization. The number of corpora lutea was determined by laparoscopy 3-4 days following mating. Subsequently, about one-half of the ewes in each group underwent an embryo transfer procedure 4-6 days following mating, with the embryos being transferred to synchronized, nonimmunized recipients. The remaining ewes were allowed to carry their pregnancies to term. Short-term immunization against either BMP15 or GDF9 peptides resulted in an increase in ovulation rate with no apparent detrimental affects on fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, or the ability of the immunized ewes to carry a pregnancy to term. Therefore, regulation of BMP15, GDF9, or both is potentially a new technique to enhance fecundity in some mammals.  相似文献   

7.
Primordial follicles from different mammal species can survive and enter the growth phase in vitro but do not develop beyond the primary stage. The hypothesis was that, in sheep, in vitro follicular growth is arrested because of a lack of secretion of GDF9 and/or BMP15. Cortical slices of 0.3-0.5 mm thickness issued from 5- to 6-month-old lambs were cultured for 15 days. The pieces were fixed on days 0, 2, 4, 7, 10, and 15 of culture. Follicle morphology, RT-PCR exploration of GDF9 and BMP15 mRNA, immunohistochemical location of their proteins and their receptor BMPRIB and BMPRII were assessed at different time of culture. The mean percentage of primordial follicles decreased from 58.6% (day 0) to 13.4% (day 15) (P<0.01), whereas that of primary follicles increased from 3.2% (day 0) to 31.5% on day 4 (P<0.01), then remained stable until day 15 (35.6%). The percentage of atretic follicles increased from 14.7% (day 0) to 27.1% (day 15) (P<0.05). A few secondary follicles were observed on days 4 and 10, representing 1.0%, and 2.1% of the total number of follicles. GDF9 and BMP15 mRNAs were detected from harvesting (day 0) up to day 15 following culture. At the same time, positive immunoreactions for GDF9, BMP15 and for BMPRIB and BMPRII were also found in oocyte cytoplasm. In conclusion, expression of GDF9, BMP15 and their receptors BMPRIB and BMPRII are detected during in vitro culture of ovine cortical slices.  相似文献   

8.
Growth differentiation factor 9 (GDF9) is an oocyte-expressed member of the transforming growth factor beta (TGF-beta) superfamily and is required for normal ovarian follicle development and female fertility. GDF9 acts as a paracrine factor and affects granulosa cell physiology. Only a few genes regulated by GDF9 are known. Our microarray analysis has identified gremlin as one of the genes up-regulated by GDF9 in cultures of granulosa cells. Gremlin is a known member of the DAN family of bone morphogenetic protein (BMP) antagonists, but its expression and function in the ovary are unknown. We have investigated the regulation of gremlin in mouse granulosa cells by GDF9 as well as other members of the TGF-beta superfamily. GDF9 and BMP4 induce gremlin, but TGF-beta does not. In addition, in cultures of granulosa cells, gremlin negatively regulates BMP4 signaling but not GDF9 activity. The expression of gremlin in the ovary was also examined by in situ hybridization. A distinct change in gremlin mRNA compartmentalization occurs during follicle development and ovulation, indicating a highly regulated expression pattern during folliculogenesis. We propose that gremlin modulates the cross-talk between GDF9 and BMP signaling that is necessary during follicle development because both ligands use components of the same signaling pathway.  相似文献   

9.
10.
Both latent transforming growth factor-beta (TGF-beta)-binding proteins fibrillins are components of microfibril networks, and both interact with members of the TGF-beta family of growth factors. Interactions between latent TGF-beta-binding protein-1 and TGF-beta and between fibrillin-1 and bone morphogenetic protein-7 (BMP-7) are mediated by the prodomain of growth factor complexes. To extend this information, investigations were performed to test whether stable complexes are formed by additional selected TGF-beta family members. Using velocity sedimentation in sucrose gradients as an assay, complex formation was demonstrated for BMP-7 and growth and differentiation factor-8 (GDF-8), which are known to exist in prodomain/growth factor complexes. Comparison of these results with complex formation by BMP-2, BMP-4 (full-length and shortened propeptides), BMP-10, and GDF-5 allowed us to conclude that all, except for BMP-2 and the short BMP-4 propeptides, formed complexes with their growth factors. Using surface plasmon resonance, binding affinities between fibrillin and all propeptides were determined. Binding studies revealed that the N-terminal end of fibrillin-1 serves as a universal high affinity docking site for the propeptides of BMP-2, -4, -7, and -10 and GDF-5, but not GDF-8, and located the BMP/GDF binding site within the N-terminal domain in fibrillin-1. Rotary shadowing electron microscopy of molecules of BMP-7 complex bound to fibrillin-1 confirmed these findings and also showed that prodomain binding targets the growth factor to fibrillin. Immunolocalization of BMP-4 demonstrated fibrillar staining limited to certain tissues, indicating tissue-specific targeting of BMP-4. These data implicate the fibrillin microfibril network in the extracellular control of BMP signaling and demonstrate differences in how prodomains target their growth factors to the extracellular space.  相似文献   

11.
Bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9 are oocyte-secreted growth factors that are critical local regulators of ovarian function and may be involved in preovulatory cumulus expansion. As cumulus expansion occurs in response to the ovulatory surge, the present study was designed: 1) to investigate whether GDF9 and BMP15 are regulated by gonadotropins in the mouse ovary; and 2) to visualize changes in both GDF9 and BMP15 immunostaining in response to gonadotropins. Immature 21-day-old mice were sequentially treated with recombinant human FSH (r-hFSH), 5 IU daily, at Days 21, 22, and 23 of life, then injected with 5 IU hCG at Day 24 of life. In response to r-hFSH, steady-state Bmp15 mRNA expression levels increased in both total ovaries and cumulus-oocyte complexes, whereas Gdf 9 mRNA levels did not. In addition, BMP15 protein levels increased in total ovaries. The GDF9 immunostaining was exclusively seen in growing oocytes in both control and gonadotropin-treated mice, whereas that of BMP15, which was also primarily seen in growing oocytes, exhibited important changes in response to gonadotropins. Strong BMP15 immunostaining was observed in the follicular fluid of atretic antral follicles after FSH treatment and in expanded, but not in compact, cumulus cells after hCG. The present results show for the first time that BMP15 levels increase during gonadotropin-induced follicular development, in parallel with oocyte maturation, and that this local factor is likely involved in cumulus expansion as previously suggested by studies in Bmp15-null mice.  相似文献   

12.
13.
Bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9 (GDF-9) are oocyte-secreted factors that are critical local regulators of ovarian physiology. Recent studies have identified a number of mutations in these genes that cause increased fertility and infertility in heterozygous or homozygous ewes carrying the mutations, respectively. Interestingly, heterozygous ewes with a mutation in both BMP-15 and GDF-9 exhibit higher fertility than those having mutation in only one of the genes. Here, we have produced recombinant human BMP-15 and GDF-9 that carry the mutations identified in those sheep, i.e. I31D and S99I in BMP-15 and S77F in GDF-9. We found that when individually expressed, both BMP-15 mutations had no effect on the processing, secretion, and dimerization of the mature proteins or on the biological activity of the molecules. However, when mutant BMP-15 was co-expressed with wild-type GDF-9, the secretion of BMP-15 and GDF-9 was significantly reduced, suggesting that the mechanisms by which the BMP-15 mutations affect sheep fertility occurs at the level of protein secretion rather than dimerization and biological activity. Moreover, when mutant GDF-9 was co-expressed with mutant BMP-15, the secretion levels of both proteins were significantly lower than those of cells co-expressing wildtype GDF-9 and mutant BMP-15, suggesting a possible mechanism for the extreme fertility observed in the compound heterozygous mutant sheep.  相似文献   

14.
Current study investigated bone morphogenetic protein 12 (BMP12) and connective tissue growth factor (CTGF) activate tendon derived stem cells (TDSCs) tenogenic differentiation, and promotion of injured tendon regeneration. TDSCs were transfected with BMP12 and CTGF via recombinant adenovirus (Ad) infection. Gene transfection efficiency, cell viability and cytotoxicity, tenogenic gene expression, collagen I/III synthesis were evaluated in vitro. For the in vivo study, the transfected cells were transplanted into the rat patellar tendon window defect. At weeks 2 and 8 of post-surgery, the repaired tendon tissues were harvested for histological and biomechanical examinations. The transfected TDSCs revealed relatively stable transfection efficiency (80–90%) with active cell viability means while rare cytotoxicity in each group. During days 1 and 5, BMP12 and CTGF transfection caused tenogenic differentiation genes activation in TDSCs: type I/III collagen, tenascin-C, and scleraxis were all up-regulated, whereas osteogenic, adipogenic, and chondrogenic markers were all down-regulated respectively. In addition, BMP12 and CTGF overexpression significantly promote type I/III collagen synthesis. After in vivo transplantation, at 2 and 8 weeks post-surgery, BMP12, CTGF and co-transfection groups showed more integrated tendon tissue structure versus control, meanwhile, the ultimate failure loads and Young’s were all higher than control. Remarkably, at 8 weeks post-surgery, the biomechanical properties of co-transfection group was approaching to normal rat patellar tendon, moreover, the ratio of type III/I collagen maintained about 20% in each transfection group, meanwhile, the type I collagen were significantly increased with co-transfection treatment. In conclusion, BMP12 and CTGF transfection stimulate tenogenic differentiation of TDSCs. The synergistic effects of simultaneous transfection of both may significantly promoted rat patellar tendon window defect regeneration.  相似文献   

15.
Journal of Physiology and Biochemistry - Bone morphogenetic protein-9 (BMP-9) is a novel cytokine which is cloned from the fetal mouse liver cDNA library and belongs to the member of the...  相似文献   

16.
Bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9 (GDF-9) are members of the transforming growth factor-beta superfamily. Both molecules are closely related in their primary structures and share a nearly identical spatiotemporal expression pattern in the oocyte during folliculogenesis in mammals. Here we have established a series of cell lines, which express recombinant BMP-15, GDF-9, or both, and investigated whether they form homodimers and/or heterodimers. We demonstrate the first evidence that both BMP-15 and GDF-9 can form non-covalent homodimers when expressed individually, while when both are co-expressed BMP-15/GDF-9 heterodimers are produced. Interestingly, when GDF-9 and BMP-15 are co-expressed the processing of both proproteins are significantly impaired as compared with that of the singly expressed proproteins, suggesting that the proprotein heterodimer is less susceptible to proteolytic cleavage than the individual homodimers. Since BMP-15 mutant sheep, called Inverdale, exhibit severe defects in ovarian function we have also established stable transformants expressing the mutant BMP-15 (InvBMP-15) alone or together with GDF-9. Although InvBMP-15 was previously predicted to be unable to form homodimers, we show here that it does form non-covalent dimers; however, the processing efficiency of InvBMP-15 proprotein is significantly lower than wild-type BMP-15. Surprisingly, when GDF-9 is co-expressed, the processing and secretion of InvBMP-15 is abolished, and the processing of GDF-9 is also severely impaired, suggesting that the heterodimers of InvBMP-15/GDF-9 proproteins are not susceptible to proteolytic cleavage and thus degrade in the cells. Based on these findings we propose a novel hypothesis that a decrease in GDF-9 secretion may be involved in causing infertility in homozygous Inverdale ewes.  相似文献   

17.
Fibroblast growth factors (FGFs) play a central role in two processes essential for lens transparency—fiber cell differentiation and gap junction–mediated intercellular communication (GJIC). Using serum-free primary cultures of chick lens epithelial cells (DCDMLs), we investigated how the FGF and bone morphogenetic protein (BMP) signaling pathways positively cooperate to regulate lens development and function. We found that culturing DCDMLs for 6 d with the BMP blocker noggin inhibits the canonical FGF-to-ERK pathway upstream of FRS2 activation and also prevents FGF from stimulating FRS2- and ERK-independent gene expression, indicating that BMP signaling is required at the level of FGF receptors. Other experiments revealed a second type of BMP/FGF interaction by which FGF promotes expression of BMP target genes as well as of BMP4. Together these studies reveal a novel mode of cooperation between the FGF and BMP pathways in which BMP keeps lens cells in an optimally FGF-responsive state and, reciprocally, FGF enhances BMP-mediated gene expression. This interaction provides a mechanistic explanation for why disruption of either FGF or BMP signaling in the lens leads to defects in lens development and function.  相似文献   

18.
19.
目的运用CRISR/Cas9技术敲除小鼠基因组中Bmp9基因片段,构建Bmp9基因敲除小鼠。方法根据Bmp9基因的外显子序列,设计一段sgRNA并合成。sgRNA体外转录后和Cas9mRNA混合后显微注射受精卵细胞,注射后的受精卵细胞移植至受体动物获得子代小鼠。提取子代小鼠基因组DNA测序鉴定其基因型。基因型鉴定正确的小鼠与野生型交配后筛选纯合子小鼠。同时取纯合子小鼠心脏、肝、脾、肺、肾,匀浆后提取总RNA和总蛋白,通过qPCR、WB和免疫组化检测BMP9在各组织中的表达。结果设计并合成20bp的sgRNA并进行体外转录,显微注射并回植后得到基因突变小鼠,连续交配后得F2代纯合子。测序结果显示,突变小鼠存在两种基因型,一种为5bp缺失突变,另一种为13bp缺失并伴有1bp插入突变。与野生型C57BL/6相比,qPCR、WB和免疫组化结果均表明基因敲除小鼠肝中BMP9表达显著降低。结论利用CRISPR/Cas9技术成功构建出了BMP9基因敲除小鼠。  相似文献   

20.
There are more than 30 human transforming growth factor beta/bone morphogenetic protein/growth differentiation factor (TGFbeta/BMP/GDF)-related ligands known to be important during embryonic development, organogenesis, bone formation, reproduction, and other physiological processes. Although select TGFbeta/BMP/GDF proteins were found to interact with type II and type I serine/threonine receptors to activate downstream Smad and other proteins, the receptors and signaling pathways for one-third of these TGFbeta/BMP/GDF paralogs are still unclear. Based on a genomic analysis of the entire repertoire of TGFbeta/BMP/GDF ligands and serine/threonine kinase receptors, we tested the ability of three orphan BMP/GDF ligands to activate a limited number of phylogenetically related receptors. We characterized the dimeric nature of recombinant GDF6 (also known as BMP13), GDF7 (also known as BMP12), and BMP10. We demonstrated their bioactivities based on the activation of Smad1/5/8-, but not Smad2/3-, responsive promoter constructs in the MC3T3 cell line. Furthermore, we showed their ability to induce the phosphorylation of Smad1, but not Smad2, in these cells. In COS7 cells transfected with the seven known type I receptors, overexpression of ALK3 or ALK6 conferred ligand signaling by GDF6, GDF7, and BMP10. In contrast, transfection of MC3T3 cells with ALK3 small hairpin RNA suppressed Smad signaling induced by all three ligands. Based on the coevolution of ligands and receptors, we also tested the role of BMPRII and ActRIIA as the type II receptor candidates for the three orphan ligands. We found that transfection of small hairpin RNA for BMPRII and ActRIIA in MC3T3 cells suppressed the signaling of GDF6, GDF7, and BMP10. Thus, the present approach provides a genomic paradigm for matching paralogous polypeptide ligands with a limited number of evolutionarily related receptors capable of activating specific downstream Smad proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号