首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Depolarization-evoked increases in intraterminal free Ca2+ are required for the induction of neurotransmitter release from nerve terminals. Although the mechanisms that regulate the voltage-induced accumulation of presynaptic Ca2+ remain obscure, there is evidence that the phospholipase-dependent accumulation of arachidonic acid, or its metabolites, may be involved. Therefore, fura-2 loaded hippocampal mossy fiber nerve endings were used to investigate the relationships between membrane depolarization, lipid metabolism and presynaptic Ca2+ availability. It was observed that depolarization of the nerve terminals with KCl induced an increase in intraterminal free calcium that was inhibited more than 90% by a combination of voltage-sensitive Ca2+ channel blockers. In addition, the K+-dependent effects on Ca2+ concentrations were attenuated in the presence of phospholipase A2 inhibitors, but were mimicked by the phospholipase A2 activator melittin and exogenous arachidonic acid. Both the melittin- and arachidonic acid-induced increases in presynaptic Ca2+ were reduced by voltage-sensitive Ca2+ channel blockers. The stimulatory effects of arachidonic acid appeared to be independent of its further metabolism to prostaglandins. In fact, inhibition of either cyclooxygenase or lipoxygenase pathways resulted in a potentiation of the depolarization-evoked increase in intraterminal free Ca2+. From these results, we propose that some portion of the depolarization-evoked increase in intraterminal free calcium depends on the activation of phospholipase A2 and the subsequent accumulation of unesterified arachidonic acid.  相似文献   

2.
The ionic requirements for K+-evoked efflux of endogenous taurine from primary cerebellar astrocyte cultures were studied. The Ca2+ ionophore A23187 evoked taurine efflux in a dose-dependent fashion with a time-course identical to that of K+-induced efflux. The Ca2+-channel antagonist nifedipine had no effect upon efflux induced by 10 or 50 mM K+. In addition, verapamil did not antagonize 50 mM K+-evoked efflux except at high, non-pharmacological concentrations (>100 M), and preincubation with 2 M -conotoxin had no effect on 50 mM K+-evoked efflux. Similarly, preincubation with 1 mM ouabain had no effect on the amount of taurine released by K+ stimulation, but did accelerate the onset of efflux by 2–4 min. Although 2 M tetrodotoxin had no effect on K+-evoked release, replacing Na+ with choline abolished the taurine efflux seen in response to K+ stimulation. Together, these findings suggest that neuronal N- and L-type Ca2+- and voltage-dependent Na+-channels are not involved in the influx of Ca2+ which appears to be necessary for K+-evoked taurine efflux, and that in addition to Ca2+, extracellular Na+ is also required.  相似文献   

3.
Summary Presynaptic GABAergic nerve terminals accumulate -aminobutyric acid (GABA) by a sodium-dependent carrier mechanism in which two Na+ are co-transported with one GABA. We have examined the influence of external GABA and cations on GABA efflux from3H-GABA loaded rat brain synaptosomes, to determine whether or not the carriers can also mediate GABA efflux. We observed that, in Ca-free media (to minimize Ca-dependent evoked release), external GABA promotes GABA efflux when the medium contains Na+, butinhibits GABA efflux in the absence of Na+. The efflux of GABA into Ca-free media is stimulated by depolarization (either with veratridine or increased external K+). These data, and published data on the internal Na+ dependence of GABA efflux into Ca-free media, indicate that exiting GABA is cotransported with Na+. The stimulatory effect of depolarization is consistent with efflux of Na+ along with the uncharged GABA. The (carrier-mediated) efflux is also stimulated when the carriers cycle inward with Na++GABA. The inhibitory effect of GABA in Na+-free media implies that GABA can bind to unloaded carriers and that the carriers loaded only with GABA cycle very slowly, if at all. Our data, and data from the literature, can be fitted to a simple model with sequential binding of solutes: external GABA binds to the carrier first, and only the free or fully-loaded (with 2Na++1GABA) carriers can cycle. Other binding sequences and random binding, do not fit the experimental observations.  相似文献   

4.
Rat brain synaptosomes prelabeled with [14C]arachidonate in their phospholipids were superfused with well oxygenated Krebs-Ringer-bicarbonate solution containing 0.2% BSA and subsequently depolarized by elevating the K+ concentration in the superfusion medium from 5 to 55 mM. The efflux of labeled arachidonate at steady state was 0.19% (n = 12) of total radioactivity per min. In the presence of 2.5 mM Ca2+, high K+ (55 mM) in the medium elicited an increase in arachidonate efflux which amounted to 121.4% (n = 6) of control. Both Ca2+ and BSA were required for the stimulated efflux of arachidonate during K+-depolarization. Under the same condition, K+-stimulation also evoked the release of [3H]norepinephrine which was preloaded into the synaptosomes prior to superfusion. EGTA abolished the stimulated release of both arachidonate and norepinephrine during K+-depolarization. These results, together with the loss of labeled arachidonic acid from phospholipids (Majewska and Sun, 1982), indicate that deacylation of membrane lipids is involved in synaptic functions.  相似文献   

5.
Summary This study concerns the properties of rapid K+ and Cl transport pathways that are present in the (H++K+)-ATPase membrane from stimulated, and secreting, gastric oxyntic cells. Ion permeabilities in the isolated stimulation-associated vesicles were monitored via the rates of H+ efflux under conditions of exclusive H+/K+ counterflux or H+–Cl co-efflux, as well as by comparison of equilibration rates for86Rb and36Cl under conditions of equilibrium exchange and unidirectional salt flux. These latter studies suggest that Rb+ and Cl pathways are conductive and independent. In spite of the functional independence of the ion pathways, several divalent cations inhibit Rb+ and Cl isotopic exchange as well as the H+ efflux that is dependent on either K+ or anion (Cl, SCN, NO2) fluxes. Zn2+ is the more potent inhibitor, reducing by 50% the sensitive component of K+, Cl, and NO2 fluxes at about 20 m; Mn2+ has a similar effect at 200 m. Ni2+ and Co2+ were roughly equipotent to Mn2+ while Mg2+ and Ca2+ had not inhibitory effect. These results suggest that the stimulation-induced permeabilities, while functioning independently, may be physically linked, i.e., residing within a single entity. In similar studies carried out in (H++K+)-ATPase vesicles obtained from nonstimulated cells, no vestiges of sensitivity to the inhibitory divalent cations could be detected. The implications of these findings for the physiology of the oxyntic cell in the context of a model for membrane fusion are discussed.  相似文献   

6.
The effects of external pH (pH out) variations on the Na+ and on the Ca2+ dependent fractions of the evoked amino acid neurotransmitter release were separately investigated, using GABA as a model transmitter. In [3H]GABA loaded mouse brain synaptosomes, the external acidification (pH out6.0) markedly decreased the Na+ dependent fraction of [3H]GABA release evoked by veratridine (10 M) in the absence of external Ca2+, as well as the Ca2+ dependent fraction of [3H]GABA release evoked by high (20 mM) K+ in the absence of external Na+. The depolarization-induced elevation of [Na i ] (monitored in synaptosomes loaded with the Na+ indicator dye, SBFI) and the depolarization-induced elevation of [Ca i ] (monitored in synaptosomes loaded with the Ca2+ indicator dye fura-2) were also markedly decreased at pH out 6. On the contrary, the external alkalinization (pH out 8) facilitated all the above responses. A slight increase of the baseline release of the [3H]GABA was observed when pH out was changed from 7.4 to 8. This effect was only observed in the presence of Ca2+. pH out changes from 7.4 to 6 or to 7 did not modify the baseline release of the transmitter. All the effects of pH out variations on [3H]GABA release were independent on the presence of HCO-3. It is concluded that external H+ regulate amino acid neurotransmitter release by their actions on presynaptic Na+ channels, as well as on presynaptic Ca2+ channels.  相似文献   

7.
Dextromethorphan (DM), a widely used antitussive, has demonstrated an effective neuroprotective effect. Excessive release of glutamate is considered to be an underlying cause of neuronal damage in several neurological diseases. In the present study, we investigated whether DM or its metabolite 3-hydroxymorphinan (3-HM) could affect glutamate release in rat cerebral cortex nerve terminals (synaptosomes). DM or 3-HM inhibited the Ca2+-dependent release of glutamate that was evoked by exposing synaptosomes to the K+ channel blocker 4-aminopyridine (4-AP), and this presynaptic inhibition was concentration-dependent. Inhibition of glutamate release by DM or 3-HM was resulted from a reduction of vesicular exocytosis, because the vesicular transporter inhibitor bafilomycin A1 completely blocked DM or 3-HM-mediated inhibition of 4-AP-evoked glutamate release. DM or 3-HM did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization, but significantly reduced depolarization-induced increase in [Ca2+]C. DM or 3-HM-mediated inhibition of 4-AP-evoked glutamate release was blocked by ω-conotoxin MVIIC, an antagonist of N- and P/Q-type Ca2+ channel, not by dantrolene, an intracellular Ca2+ release inhibitor. DM or 3-HM modulation of 4-AP-evoked glutamate release appeared to involve a protein kinase C (PKC) signaling cascade, insofar as pretreatment of synaptosomes with the PKC inhibitors GF109203X or Ro318220 all effectively occluded the inhibitory effect of DM or 3-HM. Furthermore, 4-AP-induced phosphorylation of PKC was reduced by DM or 3-HM. These results suggest that DM or 3-HM inhibits glutamate release from rat cortical synaptosomes through the suppression of presynaptic voltage-dependent Ca2+ entry and PKC activity. This may explain the neuroprotective effects of DM against neurotoxicity.  相似文献   

8.
The Ca2+-dependent K+ efflux from rat submandibular gland was studied using a K+-sensitive electrode. A K+ efflux was induced by either adrenalin or by using the divalent cation ionophore A23187 plus added Ca2+ to bypass the receptor mechanism. Trifluoperazine, which was used to investigate the role of calmodulin, was found to block the adrenalin-induced K+ efflux but not the A23187/Ca2+-induced K+ efflux. The adrenalin-induced K+ efflux was abolished by quinidine and the A23187/Ca2+-induced K+ efflux was significantly reduced by quinidine. In other experiments, the presence of indomethacin did not inhibit the adrenalin-induced K+ efflux, and exogenously added arachidonic acid did not induce a K+ efflux. It is concluded that neither prostaglandin synthesis, nor a cytosolic Ca2+-calmodulin complex is involved in the agonist-induced K+ efflux from rat submandibular gland. A similarity between the Ca2+-dependent K+ efflux mechanism of erythrocyte ghosts and submandibular tissue is indicated by their common response to quinidine.  相似文献   

9.
The effects of spontaneous and evoked [3H]taurine release from a P2 fraction prepared from rat retinas were studied. The P2 fraction was preloaded with [3H]taurine under conditions of high-affinity uptake and then examined for [3H]taurine efflux utilizing superfusion techniques. Exposure of the P2 fraction to high K+ (56 mM) evoked a Ca2+-independent release of [3H]taurine. Li+ (56 mM) and veratridine (100 M) had significantly less effect (8–15% and 15–30%, respectively) on releasing [3H]taurine compared to the K+-evoked release. 4-Aminopyridine (1 mM) had no effect on the release of [3H]taurine. The spontaneous release of [3H]taurine was also Ca2+-independent. When Na+ was omitted from the incubation medium K+-evoked [3H]taurine release was inhibited by approximately 40% at the first 5 minute depolarization period but was not affected at a second subsequent 5 minute depolarization period. The spontaneous release of [3H]taurine was inhibited by 60% in the absence of Na+. Substitution of Br for Cl had no effect on the release of either spontaneous or K+-evoked [3H]taurine release. However, substitution of the Cl with acetate, isethionate, or gluconate decreased K+-evoked [3H]taurine release. Addition of taurine to the superfusion medium (homoexchange) resulted in no significant increase in [3H]taurine efflux. The taurine-transport inhibitor guanidinoethanesulfonic acid increased the spontaneous release of [3H]taurine by approximately 40%. These results suggest that the taurine release of [3H]taurine is not simply a reversal of the carrier-mediated uptake system. It also appears that taurine is not released from vesicles within the synaptosomes but does not rule out the possibility that taurine is a neurotransmitter. The data involving chloride substitution with permeant and impermeant anions support the concept that the major portion of [3H]taurine release is due to an osmoregulatory action of taurine while depolarization accounts for only a small portion of [3H]taurine release.  相似文献   

10.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

11.
Summary It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl with a ratio of 1 1 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx.  相似文献   

12.
Summary The effects of cAMP, ATP and GTP on the Ca2+-dependent K+ channel of fresh (1–2 days) or cold-stored (28–36 days) human red cells were studied using atomic absorption flame photometry of Ca2+-EGTA loaded ghosts which had been resealed to monovalent cations in dextran solutions. When high-K+ ghosts were incubated in an isotonic Na+ medium, the rate constant of Ca2+-dependent K+ efflux was reduced by a half on increasing the theophylline concentration to 40mm. This effect was observed in ghosts from both fresh and stored cells, but only if they were previously loaded with ATP. The inhibition was more marked when Mg2+ was added together with ATP, and it was abolished by raising free Ca2+ to the micromolar level. Like theophylline, isobutyl methylxanthine (10mm) also affected K+ efflux. cAMP (0.2–0.5mm), added both internally and externally (as free salt, dibutyryl or bromide derivatives), had no significant effect on K+ loss when the ghost free-Ca2+ level was below 1 m, but it was slightly inhibitory at higher concentrations. The combined presence of cAMP (0.2mm) plus either theophylline (10mm), or isobutyl methylxanthine (0.5mm), was more effective than cAMP alone. This inhibition showed a strict requirement for ATP plus Mg2+ and it, was not overcome by raising internal Ca2+. Ghosts from stored cells seemed more sensitive than those from fresh cells, to the combined action of cAMP and methylxanthines. Loading ATP into ghosts from fresh or stored cells markedly decreased K+ loss. Although this effect was observed in the absence of added Mg2+ (0.5mm EDTA present), it was potentiated upon adding 2mm Mg2+. The K+ efflux from ATP-loaded ghosts was not altered by dithio-bis-nitrobenzoic acid (10mm) or acridine orange (100 m), while it was increased two-to fourfold by incubating with MgF2 (10mm), or MgF2 (10mm)+theophylline (40mm), respectively. By contrast, a marked efflux reduction was obtained by incorporating 0.5mm GTP into ATP-containing ghosts. The degree of phosphorylation obtained by incubating membranes with (-32P)ATP under various conditions affecting K+ channel activity, was in direct correspondence to their effect on K+ efflux. The results suggest that the K+ channel of red cells is under complex metabolic control, via cAMP-mediated and nonmediated mechanisms, some which require ATP and presumably, involve phosphorylation of the channel proteins.  相似文献   

13.
The effect of -Aga IVA, a P-type Ca2+ channel blocker, on the release of the inhibitory neurotransmitter GABA and on the elevation of Cai induced by depolarization was investigated in [3H]GABA and fura-2 preloaded mouse brain synaptosomes, respectively. Two strategies (i.e. 20 mM external K+ and veratridine) that depolarize by different mechanisms the preparation were used. High K+ elevates Cai and induces [3H]GABA release in the absence of external Na+ and in the presence of TTX, conditions that abolish veratridine induced responses. The effect of -Aga IVA on the Ca2+ and Na+ dependent fractions of the depolarization evoked release of [3H]GABA were separately investigated in synaptosomes depolarized with high K+ in the absence of extermal Na+ and with veratridine in the absence of external Ca2+, respectively. The Ca2+ dependent fraction of the evoked release of [3H]GABA and the elevation of Ca2+ induced by high K+ are markedly inhibited (about 50%) in synaptosomes exposed to -Aga IVA (300 nM) for 3 min before depolarization, whereas the Na+ dependent, Ca2+ independent carrier mediated release of [3H]GABA induced by veratridine, which is sensitive to verapamil and amiloride, is not modified by -Aga IVA. Our results indicate that an -Aga IVA sensitive type of Ca2+ channel is highly involved in GABA exocytosis.  相似文献   

14.
Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about –50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2, 4 dimethylbenzamil (DMB), at 30 M, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2, 4 dimethylbenzamil (CBZ-DMB), at 30 M, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.Abbreviations used BCECF 2,7-Biscarboxyethyl-5(6)-carboxyfluorescein - BCECF/AM acetoxymethyl ester of BCECF - [Ca2+]i Internal free calcium ion concentration - CBZ-DMB 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil - DMB 2, 4-dimethylbenzamil - DMSO dimethyl sulfoxide - Indo-1/AM acetoxymethyl ester of Indo-1 - MES 2-|N-Morpholino|ethanesulfonic acid - NMG N-methyl-D-glucamine - pHi internal pH - TPP+ tetraphenylphosphonium - p plasma membrane potential  相似文献   

15.
Abstract: The effects of prostaglandin E2 (PGE2) on 86Rb efflux from rat brain synaptosomes were studied to explore its role in nerve ending potassium (K+) channel modulation. A selective dose-dependent inhibition of the calcium-activated charybdotoxin-sensitive component of efflux was found upon application of PGE2. No significant effect was seen on basal and voltage-dependent components over the concentration range of 10–8 to 10–5M. The protein kinase C (PKC) inhibitors H-7 (10 μM) and staurosporine (100 nM), as well as prolonged preincubation (90 min) with 40-phorbol 12, 13-dibutyrate, which has been reported to down-regulate PKC, abolished the PGE2-in- duced inhibition, whereas HA1004 (10 μM) and Rp-3′,5’cyclic phosphorothioate (100 nM), which are relatively more selective for protein kinase A than PKC, did not. 4β-Phorbol 12, 13-dibutyrate (100 nM), an activator of PKC, produced a similar inhibition of the Ca2+-dependent component of 86Rb efflux but also had no effect on the basal and voltage-dependent components. These data suggest that PGE2 can inhibit rat brain nerve ending calcium-activated 86Rb efflux, and this inhibition may involve PKC activation.  相似文献   

16.
Vesicles derived from maize roots retain a membrane bound H+-ATPase that is able to pump H+ at the expense of ATP hydrolysis. In this work it is shown that heparin, fucose-branched chondroitin sulfate and dextran sulfate 8000 promote a shift of the H+-ATPase optimum pH from 6.0 to 7.0. This shift is a result of a dual effect of the sulfated polysaccharides, inhibition at pH 6.0 and activation at pH 7.O. At pH 6.0 dextran 8000 promotes an increase of the apparent Km for ATP from 0.28 to 0.95 mM and a decrease of the Vmax from 14.5 to 7.1 mol Pi/mg · 30 min–1. At pH 7.0 dextran 8000 promotes an increase in Vmax from 6.7 to 11.7 mol Pi/mg · 30 min–1. In the presence of lysophosphatidylcholine the inhibitory effect of the sulfated polysaccharides observed at pH 6.0 was not altered but the activation of pH 7.0 decreased. It was found that in the presence of sulfated polysaccharides the ATPase became highly sensitive to K+ and Na+. Both the inhibition at pH 6.0 and the activation promoted by the polysaccharide were antagonized by monovalent cations (K+>Na+Li+).Abbreviations Mops 4-morpholinopropanesulfonic acid - EDTA ethylenediaminetetraacetic acid - ACMA 9-amino-6-chloro-2-methoxyacridine - FCCP carbonyl cyanide p(trifluoromethoxy)-phenylhyrazone  相似文献   

17.
Voltage-gated whole-cell currents were recorded from cultured microglial cells which had been developed in the presence of the macrophage/microglial growth factor granulocyte/macrophage colony-stimulating factor. Outward K+ currents (I K) were most prominent in these cells. I Kcould be activated at potentials more positive than –40 mV. Half-maximal activation of I Kwas achieved at –13.8 mV and half-maximal inactivation of I Kwas determined at –33.8 mV. The recovery of I Kfrom inactivation was described by a time constant of 7.9 sec. For a tenfold change in extracellular K+ concentration the reversal potential of I Kshifted by 54 mV.Extracellularly applied 10 mm tetraethylammonium chloride reduced I K by about 50%, while 5 mm 4-aminopyridine almost completely abolished I K. Several divalent cations (Ba2+, Cd2+, Co2+, Zn2+) reduced current amplitudes and shifted the activation curve of I Kto more positive values. Charybdotoxin (IC50 = 1.14 nm) and noxiustoxin (IC50=0.89 nm) blocked I Kin a concentration-dependent manner, whereas dendrotoxin and mast cell degranulating peptide had no effect on the current amplitudes.  相似文献   

18.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

19.
A second messenger role for arachidonic acid (AA) in the regulation of the high-affinity choline uptake (HACU) was suggested. It was repotted that micromolar concentrations of AA applied in vitro decreased the HACU values and increased the specific binding of [3H]hemicholinium-3 ([3H]HCh-3). It was published that L-glutamic acid (GA) applied in vivo produced a fall in the HACU values. In addition, GA liberates free AA. In this study, an ability of GA to influence in vitro the activity of presynaptic cholinergic nerve terminals via its effect on the release of AA is investigated in hippocampal synaptosomes of young Wistar rats. Millimolar concentrations of GA decrease both the high- and low-affinity choline uptake, the specific as well as nonspecific binding of [3H]HCh-3 and the activity of Na+,K+-ATPase. Kinetic analysis (Lineweaver-Burk and Scatchard plots) reveals a change in Vmax and Bmax, but not in KM and KD. It appears very likely that under normal conditions GA applied in vitro is not able to change markedly the choline transport via its effect on the release of AA. Results confirm the hypothesis about an indirect inhibitory role for glutamatergic receptors on cholinergic cells.  相似文献   

20.
Abstract— The presynaptic regulation of stimulated dopa-mine release from superfused rat striatal synaptosomes by opioids and γ-aminobutyric acid (GABA) was studied. It was found that in addition to dopamine D2 autoreceptors, calcium-dependent K+-stimulated [3H]dopamine release was inhibited through activation of a homogeneous population of k -opioid receptors in view of the potent inhibitory effect of the k -selective agonist U69.593 (EC50 0.2 nM) and its antagonism by norbinaltorphimine. Neither μ-nor δ-selective receptor agonists affected release of [3H]-dopamine. In addition, GABA potently inhibited the evoked [3H]dopamine release (EC50 0.4 nM) through activation of GABAA receptors in view of the GABA-mimicking effect of muscimol, the sensitivity of its inhibitory effect to picro-toxin and bicuculline, and the absence of an effect of the GABAB receptor agonist baclofen. In the presence of a maximally effective concentration of GABA, U69,593 did not induce an additional release-inhibitory effect, indicating that these receptors and the presynaptic D2 receptor are colocalized on the striatal dopaminergic nerve terminals. The excitatory amino acid agonists N-methyl-d -aspartate and kainate, as well as the cholinergic agonist carbachol, stimulated [3H]dopamine release, which was subject to k -opioid receptor-mediated inhibition. In conclusion, striatal dopamine release is under regulatory control of multiple excitatory and inhibitory neurotransmitter by activation of colocalized presynaptic receptors for excitatory amino acids, acetylcholine, dopamine, dynorphins, and GABA within the dopaminergic nerve terminals. Together, these receptors locally control ongoing dopamine neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号