首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quan-Guo Zhang  Da-Yong Zhang 《Oikos》2006,112(1):218-226
The relationship between species diversity and ecosystem stability has long interested ecologists, yet no consensus has been reached and the underlying mechanisms remain unclear. We used five unicellular algal species, cultured in all possible combinations, to assemble microcosms containing 1 to 5 algal species, on which a cold perturbation was imposed. Our aim was to find whether and how species richness begets ecosystem resistance and resilience. In the experiment, the species-rich communities produced more biomass than the species-poor ones, either in pre-, under- or post-perturbation conditions. The positive diversity–biomass relationship was weakened by the perturbation, and fully restored one week after the perturbation. The diverse communities showed greater absolute biomass reduction during the perturbation than did species-poor systems. Resistance of community, measured by the relative change in biomass from pre- to under-perturbation, decreased with species richness. All the species showed significant reduction in biomass when stressed, without any density compensation among species in diverse communities; and the ratio of biomass change in each species was independent of diversity. The overyielding effect, measured as relative yield total, remained constant from pre- to under-perturbation; and the selection and complementarity effects played equal roles for the biodiversity effect on biomass production, and their relative importance was not altered by the perturbation. These results suggest that similar responses of different species to environmental perturbations may limit the insurance effect of biodiversity, and lead to an inverse diversity–resistance relationship.  相似文献   

2.
The significance of assemblage-level thinning for species richness   总被引:7,自引:3,他引:4  
1 A unimodal relationship between species richness and primary productivity is commonly reported. To explain this pattern, the mechanisms proposed in the many hypotheses are generally complex and almost all are without a strong empirical foundation. Here we evaluate the role of self-thinning in plant assemblages: assemblage-level thinning.
2 We developed a simple two-parameter model of species richness that predicts that plant species richness will be determined by a unimodal relationship between total plant density and above-ground biomass. This model provides a very narrowly defined set of testable quantitative predictions, and thus is the first falsifiable model of assemblage-level thinning. We fit this model to the species richness–above-ground biomass data from 14 empirical studies that are often cited as evidence of a general diversity–productivity relationship. In addition, we compared our model to two other models, one more flexible and one more constrained than our own.
3 We found that our model of species richness explained a substantial and statistically significant portion of the species richness observed in 11 of the 14 empirical studies of species richness–biomass patterns. Therefore, given the conservative nature of our model, and the number of previously published data sets explained by this model, we argue that assemblage-level thinning not only provides a viable and exceedingly parsimonious explanation, but may also be a widespread phenomenon.  相似文献   

3.
Guo Q  Shaffer T  Buhl T 《Ecology letters》2006,9(12):1284-1292
Detailed knowledge of the relationship between plant diversity and productivity is critical for advancing our understanding of ecosystem functioning and for achieving success in habitat restoration efforts. However, effects and interactions of diversity, succession and biotic invasions on productivity remain elusive. We studied newly established communities in relation to preexisting homogeneous vegetation invaded by exotic plants in the northern Great Plains, USA, at four study sites for 3 years. We observed variant diversity–productivity relationships for the seeded communities (generally positive monotonic at three sites and non-monotonic at the other site) but no relationships for the resident community or the seeded and resident communities combined at all sites and all years. Community richness was enhanced by seeding additional species but productivity was not. The optimal diversity (as indicated by maximum productivity) changed among sites and as the community developed. The findings shed new light on ecosystem functioning of biodiversity under different conditions and have important implications for restoration.  相似文献   

4.
Jaan Liira  Kristjan Zobel 《Oikos》2000,91(1):109-114
So far, in all studies on the much-discussed hump-backed relationship between plant community productivity and species richness, productivity has been assessed through plant shoot biomass, i.e. it has been ignored that frequently most of the biomass is produced below ground. We revisited the 27 grassland and forest field-layer communities, studied earlier by Zobel and Liira, to sample root biomass, plant total biomass and root/shoot allocation, and learn how the incorporation of below-ground biomass data would affect the shape of the hump-backed relationship. In order to avoid scaling artefacts we estimated richness as the average count of species per 500 plant ramets (absolute richness). We also included relative richness measures. Relative richness was defined as richness per 500 ramets/size of the actual species pool (the set of species present in the community), relative pool size was defined as size of the actual species pool/size of the regional species pool (the set of species available in the region and capable of growing in the given community).
The biomass-absolute richness relationship was humped, irrespective of the biomass measure used, the hump being most obvious when plant total biomass was used as the independent variable. Evidently, the unimodal richness–productivity curve is not a sampling artefact, as suspected by Oksanen. However, relative richness was not related to community biomass (above-ground, below-ground or total). The hump-backed curve is shaped by the sizes of actual species pools in communities, implying that processes which are responsible for small-scale diversity pattern mainly operate on the community level.
Neither absolute nor relative richness were significantly related to root/shoot allocation. The presumably stronger (asymmetric) shoot competition at greater allocation to shoots appears not to suppress small-scale richness. However, there is a significant relationship between relative pool size and root/shoot allocation. Relatively more species from regional species pools are able to enter and persist in communities with more biomass allocated into roots.  相似文献   

5.
The relationship between diversity and productivity of plant community under plant invasion has been not well known up to now. Here, we investigated the relationship between diversity and productivity under plant invasion and studied the response of species level plant mass to species richness in native and invaded communities. A field experiment from 2008 to 2013 and a pot experiment in 2014 were conducted to study the effects of plant invasion on the relationship between diversity and productivity and the response of species level plant mass to species richness in native and invaded communities. The community level biomass was negatively correlated to plant species richness in invaded communities while the same relationship was positive in native communities. The species level plant mass of individual species responded differently to overall plant species richness in the native and invaded communities, namely, most of the species’ plant mass increased in native communities, but decreased in invaded communities with increasing species richness. The complementarity or selection effects might dominate in native communities while competition effects might dominate in invaded communities. Accordingly, the negative relationship between diversity and productivity under plant invasion is highlighted in our experiments.  相似文献   

6.
A detailed study of the variation in productivity across a diversity gradient in an experimental Mediterranean grassland examines the effects of a dominant perennial grass species upon the overall diversity–productivity relationship. The experiment took place at the Greek site of the European-wide BIODEPTH programme. The experimental design is characterized by the use of a number of communities containing annuals and perennials within the total set of manipulated plots. The main results are: 1) a log-linear relationship between diversity and productivity exists in Mediterranean grasslands synthesized by annuals only, 2) in mixed communities where multiple growth forms coexist, the performance of a dominant or keystone species may reverse or hide the diversity–productivity pattern of a functional or growth form group of species taken separately, and 3) the introduction of the dominant grass in the low-diversity mixtures creates an 'inverted' sampling effect which can produce as an artefact a constant productivity response across the diversity gradient.  相似文献   

7.
Theory and empirical results suggest that high biodiversity should often cause lower temporal variability in aggregate community properties such as total community biomass. We assembled microbial communities containing 2 to 8 species of competitors in aquatic microcosms and found that the temporal change in total community biomass was positively but insignificantly associated with diversity in a constant temperature environment. There was no evidence of any trend in variable temperature environments. Three non-exclusive mechanisms might explain the lack of a net stabilising effect of species richness on temporal change. (1) A direct destabilising effect of diversity on population level variances caused some populations to vary more when embedded in more diverse communities. (2) Similar responses of the different species to environmental variability might have limited any insurance effect of increased species richness. (3) Large differences in the population level variability of different species (i.e., unevenness) could weaken the relation between species richness and community level stability. These three mechanisms may outweigh the stabilising effects of increases in total community biomass with diversity, statistical averaging, and slightly more negative covariance in more diverse communities. Our experiment and analyses advocate for further experimental investigations of diversity-variability relations.  相似文献   

8.
A humped-back relationship between species richness and community biomass has frequently been observed in plant communities, at both local and regional scales, although often improperly called a productivity-diversity relationship. Explanations for this relationship have emphasized the role of competitive exclusion, probably because at the time when the relationship was first examined, competition was considered to be the significant biotic filter structuring plant communities. However, over the last 15 years there has been a renewed interest in facilitation and this research has shown a clear link between the role of facilitation in structuring communities and both community biomass and the severity of the environment. Although facilitation may enlarge the realized niche of species and increase community richness in stressful environments, there has only been one previous attempt to revisit the humped-back model of species richness and to include facilitative processes. However, to date, no model has explored whether biotic interactions can potentially shape both sides of the humped-back model for species richness commonly detected in plant communities. Here, we propose a revision of Grime's original model that incorporates a new understanding of the role of facilitative interactions in plant communities. In this revised model, facilitation promotes diversity at medium to high environmental severity levels, by expanding the realized niche of stress-intolerant competitive species into harsh physical conditions. However, when environmental conditions become extremely severe the positive effects of the benefactors wane (as supported by recent research on facilitative interactions in extremely severe environments) and diversity is reduced. Conversely, with decreasing stress along the biomass gradient, facilitation decreases because stress-intolerant species become able to exist away from the canopy of the stress-tolerant species (as proposed by facilitation theory). At the same time competition increases for stress-tolerant species, reducing diversity in the most benign conditions (as proposed by models of competition theory). In this way our inclusion of facilitation into the classic model of plant species diversity and community biomass generates a more powerful and richer predictive framework for understanding the role of plant interactions in changing diversity. We then use our revised model to explain both the observed discrepancies between natural patterns of species richness and community biomass and the results of experimental studies of the impact of biodiversity on the productivity of herbaceous communities. It is clear that explicit consideration of concurrent changes in stress-tolerant and competitive species enhances our capacity to explain and interpret patterns in plant community diversity with respect to environmental severity.  相似文献   

9.
对不同类型草地功能群多样性和组成与植物群落生产力之间的关系进行了探讨。结果表明:(1)在矮嵩草(Kobresia humlis)草甸和金露梅(Potentilla froticosa)灌丛中,豆科植物的作用比较明显,而其他功能群植物的作用较弱。(2)在藏嵩草(Kobresia tibetica)沼泽化草甸和小嵩草(K.pygmaca)草甸中,虽然杂类草、C3植物和莎草科植物功能群的生产力占群落初级生产力的比例较大,但二者在统计上没有显著性差异,这表明群落生产力除受物种多样性的影响外,也受物种本身特征和环境资源的影响,更主要的是受到功能群内物种密度和均匀度的影响,即功能群组成比功能群多样性更能说明对生态系统过程的影响。(3)不同类型草地群落植物功能群盖度与群落初级生产力呈显著的线性相关。(4)不同类型草地群落生产力与功能群内物种数的变化均表现为单峰曲线关系,即功能群内物种数处于中间水平时,群落生产力最高。  相似文献   

10.
Plant performance is determined by the balance of intra‐ and interspecific neighbors within an individual's zone of influence. If individuals interact over smaller scales than the scales at which communities are measured, then altering neighborhood interactions may fundamentally affect community responses. These interactions can be altered by changing the number (species richness), abundances (species evenness), and positions (species pattern) of the resident plant species, and we aimed to test whether aggregating species at planting would alter effects of species richness and evenness on biomass production at a common scale of observation in grasslands. We varied plant species richness (2, 4, or 8 species and monocultures), evenness (0.64, 0.8, or 1.0), and pattern (planted randomly or aggregated in groups of four individuals) within 1 × 1 m plots established with transplants from a pool of 16 tallgrass prairie species and assessed plot‐scale biomass production and diversity over the first three growing seasons. As expected, more species‐rich plots produced more biomass by the end of the third growing season, an effect associated with a shift from selection to complementarity effects over time. Aggregating conspecifics at a 0.25‐m scale marginally reduced biomass production across all treatments and increased diversity in the most even plots, but did not alter biodiversity effects or richness–productivity relationships. Results support the hypothesis that fine‐scale species aggregation affects diversity by promoting species coexistence in this system. However, results indicate that inherent changes in species neighborhood relationships along grassland diversity gradients may only minimally affect community (meter) – scale responses among similarly designed biodiversity–ecosystem function studies. Given that species varied in their responses to local aggregation, it may be possible to use such species‐specific results to spatially design larger‐scale grassland communities to achieve desired diversity and productivity responses.  相似文献   

11.
This paper stresses that the mechanism of coexistence is the key to understanding the relationship between species richness and community productivity. Using model plant communities, we explored two general kinds of mechanisms based on resource heterogeneity and recruitment limitation, with and without any trade-off between reproductive and competitive abilities. We generated different levels of species richness by changing model parameters, in particular the number of species in the regional pool, the degree of recruitment limitation, and the level of heterogeneity. Different diversity–productivity patterns are obtained with different coexistence mechanisms, indicating there is no reason to expect any general relationship between species richness and productivity. We discuss these results in the context of the within-site and across-site aspects of the relationship between species richness and productivity. Furthermore, we extend these results to hypothesize the relationship between species richness and productivity for other coexistence mechanisms not explicitly considered here.  相似文献   

12.
Contemporary biodiversity experiments, in which plant species richness is manipulated and aboveground productivity of the system measured, generally demonstrate that lowering plant species richness reduces productivity. However, we propose that community density may in part compensate for this reduction of productivity at low diversity. We conducted a factorial experiment in which plant functional group richness was held constant at three, while plant species richness increased from three to six to 12 species and community density from 440 to 1050 to 2525 seedlings m−2. Response variables included density, evenness and above- and belowground biomass at harvest. The density gradient converged slightly during the course of the experiment due to about 10% mortality at the highest sowing density. Evenness measured in terms of aboveground biomass at harvest significantly declined with density, but the effect was weak. Overall, aboveground, belowground and total biomass increased significantly with species richness and community density. However, a significant interaction between species richness and community density occurred for both total and aboveground biomass, indicating that the diversity–productivity relationship was flatter at higher than at lower density. Thus, high species richness enabled low-density communities to reach productivity levels otherwise seen only at high density. The relative contributions of the three functional groups C3, C4 and nitrogen-fixers to aboveground biomass were less influenced by community density at high than at low species richness. We interpret the interaction effects between community density and species richness on community biomass by expanding findings about constant yield and size variation from monocultures to plant mixtures.  相似文献   

13.
Seed limitation can narrow down the number of coexisting plant species, limit plant community productivity, and also constrain community responses to changing environmental and biotic conditions. In a 10-year full-factorial experiment of seed addition, fertilisation, warming and herbivore exclusion, we tested how seed addition alters community richness and biomass, and how its effects depend on seed origin and biotic and abiotic context. We found that seed addition increased species richness in all treatments, and increased plant community biomass depending on nutrient addition and warming. Novel species, originally absent from the communities, increased biomass the most, especially in fertilised plots and in the absence of herbivores, while adding seeds of local species did not affect biomass. Our results show that seed limitation constrains both community richness and biomass, and highlight the importance of considering trophic interactions and soil nutrients when assessing novel species immigrations and their effects on community biomass.  相似文献   

14.
Dispersal is a major factor regulating the number of coexisting species, but the relationship between species diversity and ecosystem processes has mainly been analysed for communities closed to dispersal. We experimentally investigated how initial local diversity and dispersal frequency affect local diversity and biomass production in open benthic microalgal metacommunities. Final local species richness and local biomass production were strongly influenced by dispersal frequency but not by initial local diversity. Both final local richness and final local biomass showed a hump-shaped pattern with increasing dispersal frequency, with a maximum at intermediate dispersal frequencies. Consequently, final local biomass increased linearly with increasing final richness. We conclude that the general relationship between richness and ecosystem functioning remains valid in open systems, but the maintenance of ecosystem processes significantly depends on the effects of dispersal on species richness and local interactions.  相似文献   

15.
Identifying the factors controlling local community structure is a central problem in ecology. Ecologists frequently use regression to test for a nonlinear saturating relationship between local community richness and regional species pool richness, suggesting that species interactions limit the number of locally coexisting species. However, communities in different regions are not independent if regions share species. We present a Monte Carlo test for whether an observed local-regional richness relationship is significantly different from that expected when regions are nonindependent and species interactions do not limit community membership. We illustrate this test with data from experimental microcosm communities. A conventional F -test suggests a significant saturating relationship between realized community richness and species pool richness. However, the Monte Carlo test fails to reject the null hypothesis that species interactions do not affect community richness. Strong species interactions do not necessarily set an absolute upper limit to the number of locally coexisting species.  相似文献   

16.
The relationship between biodiversity and ecosystem functioning has become a prominent topic in the ecological literature. However, the contemporary approach that species diversity controls primary productivity contrasts with the historical perspective that species diversity responds to productivity. Moreover, previous experimental results have not been consistent with the patterns observed in nature. To resolve these questions, the multivariate productivity–diversity (MPD) hypothesis proposes a bidirectional relationship between diversity and productivity. It predicts that the resource supply, expressed in terms of resource availability and imbalance, establishes the number of species that can locally coexist. Simultaneously, the resource supply also indirectly affects biomass production, determining the form and cause of the effects of species richness on resource use and biomass. To test the MPD hypothesis, we conducted three field experiments with a subtidal marine macroalgal community using a seasonal upwelling process as a driver of distinct levels of nutrient supply. Seasonally, macroalgal species richness and biomass were assessed and experimental manipulations conducted to investigate the relative importance of species richness and identity effects on biomass production and the mechanisms underlying these. Changes in macroalgal biomass and species richness were observed in response to the nutrient supply. Stronger effects of species identity were detected for all periods investigated, although species richness effects also occurred to some extent. The magnitudes of the net biodiversity and of the complementarity effects were a unimodal function of nutrient supply, whereas a concave‐up curve was observed for selection effects. The nutrient supply directly affected the number of species that dominated the local community and, consequently, determined the efficiency with which resources were exploited and converted to biomass. Our results provide evidence consistent with the MPD hypothesis and aids in explaining the discrepancies between experimental results and natural patterns through the merging of two contrasting perspectives in ecology.  相似文献   

17.
Diversity is one major factor driving plant productivity in temperate grasslands. Although decomposers like earthworms are known to affect plant productivity, interacting effects of plant diversity and earthworms on plant productivity have been neglected in field studies. We investigated in the field the effects of earthworms on plant productivity, their interaction with plant species and functional group richness, and their effects on belowground plant competition. In the framework of the Jena Experiment we determined plant community productivity (in 2004 and 2007) and performance of two phytometer plant species [Centaurea jacea (herb) and Lolium perenne (grass); in 2007 and 2008] in a plant species (from one to 16) and functional group richness gradient (from one to four). We sampled earthworm subplots and subplots with decreased earthworm density and reduced aboveground competition of phytometer plants by removing the shoot biomass of the resident plant community. Earthworms increased total plant community productivity (+11%), legume shoot biomass (+35%) and shoot biomass of the phytometer C. jacea (+21%). Further, phytometer performance decreased, i.e. belowground competition increased, with increasing plant species and functional group richness. Although single plant functional groups benefited from higher earthworm numbers, the effects did not vary with plant species and functional group richness. The present study indicates that earthworms indeed affect the productivity of semi-natural grasslands irrespective of the diversity of the plant community. Belowground competition increased with increasing plant species diversity. However, belowground competition was modified by earthworms as reflected by increased productivity of the phytometer C. jacea. Moreover, particularly legumes benefited from earthworm presence. Considering also previous studies, we suggest that earthworms and legumes form a loose mutualistic relationship affecting essential ecosystem functions in temperate grasslands, in particular decomposition and plant productivity. Further, earthworms likely alter competitive interactions among plants and the structure of plant communities by beneficially affecting certain plant functional groups.  相似文献   

18.
Rixen C  Mulder CP 《Oecologia》2005,146(2):287-299
A positive relationship between plant species richness and ecosystem functioning has been found in a number of experimental studies. Positive species interactions at high species numbers have been suggested as a cause, but mechanisms driving positive interactions have not often been tested. In this experiment we asked three questions: (1) What is the relationship between species richness and productivity in experimentally constructed moss communities? (2) Is this relationship affected by plant density? and (3) Can changes in moisture absorption and retention explain observed relationships? To answer these questions we exposed arctic tundra moss communities of different species richness levels (1–11 species) and two different densities in the greenhouse to two levels of drought (short and long). Biomass (by the community and individual species), height and community moisture absorption and retention were measured as response variables. High species diversity increased productivity (more so in low-density plots than in high-density plots), but only when plots were watered regularly. Plot moisture retention was improved at high species richness as well, and plant height and variation in height was increased compared to plants in monoculture. Under high-density and short-drought conditions 10 out of 12 species grew better in mixture than in monoculture, but under the long drought treatment only six species did. A positive feedback loop between biomass and improved humidity under high diversity was supported by path analysis. We conclude that in this community the relationship between species richness and productivity depends on moisture availability and density, with improved water absorption and retention likely to be the mechanism for increased plant growth when drought periods are short. Furthermore, since this is the opposite of what has been found for temperate moss communities, conclusions from one system cannot automatically be extrapolated to other systems.  相似文献   

19.
Studies examining the relationship between species richness and the productivity of ecological communities have taken one of two opposite viewpoints, viewing either productivity as a primary driver of richness or richness as a driver of productivity. Recently, verbal and graphical hypotheses have been proposed that attempt to merge these perspectives by clarifying the causal pathways that link resource supply, species richness, resource use, and biomass production. Here we present mathematical models that formalize how these pathways can operate simultaneously in a single ecological system. Using a metacommunity framework in which classic consumer-resource competition theory governs species interactions within patches, we show that the mechanisms by which resource supply influences species richness are inherently linked to the mechanisms by which species richness controls resource use and biomass production. Unlike prior hypotheses, our models show that resource supply can affect species richness and that richness can affect productivity simultaneously at a single spatial scale. Our models also reproduce scale-dependent associations between species richness and community biomass that have been reported elsewhere. By detailing the pathways by which resource supply, species richness, biomass production, and resource use are connected, our models move closer to resolving the nature of causality in diversity-productivity relationships.  相似文献   

20.
Aim The diversity–productivity relationship is a controversial issue in ecology. Diversity is sometimes seen to increase with productivity but a unimodal relationship has often been reported. Competitive exclusion was cited initially to account for the decrease of diversity at high productivity. Subsequently, the roles of evolutionary history (species pool size) and dispersal rate have been acknowledged. We explore how the effects of species pool, dispersal and competition combine to produce different diversity–productivity relationships. Methods We use a series of simulations with a spatially explicit, individual‐based model. Following empirical expectations, we used four scenarios to characterize species pool size along the productivity gradient (uniformly low and high, linear increase and unimodal). Similarly, the dispersal rate varied along the productivity gradient (uniformly low and high, and unimodal). We considered both neutral communities and communities with competitive exclusion. Results and main conclusions Our model predicts that competitive interactions will result in unimodal diversity–productivity relationships. The model often predicts unimodal patterns in neutral communities as well, although the decline in richness at high productivity is less than in competing communities. A positive diversity–productivity relationship is simulated for neutral communities when the species pool size increases with productivity and the dispersal rate is high. This scenario is probably more widespread in nature than the others since positive diversity–productivity relationships have been observed more frequently than previously expected, especially in the tropics and for woody species. Our simulated effects of species pool, dispersal and competition on diversity patterns can be linked to empirical observations to uncover mechanisms behind the diversity–productivity relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号