首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has previously been shown that myo-inositol hexakisphosphate (myo-InsP6) mediates iron transport into Pseudomonas aeruginosa and overcomes iron-dependent growth inhibition. In this study, the iron transport properties of myo-inositol trisphosphate and tetrakisphosphate regio-isomers were studied. Pseudomonas aeruginosa accumulated iron (III) at similar rates whether complexed with myo-Ins(1,2,3)P3 or myo-InsP6. Iron accumulation from other compounds, notably D/L myo-Ins(1,2,4,5)P4 and another inositol trisphosphate regio-isomer, D-myo-Ins(1,4,5)P3, was dramatically increased. Iron transport profiles from myo-InsP6 into mutants lacking the outer membrane porins oprF, oprD and oprP were similar to the wild-type, indicating that these porins are not involved in the transport process. The rates of reduction of iron (III) to iron (II) complexed to any of the compounds by a Ps. aeruginosa cell lysate were similar, suggesting that a reductive mechanism is not the rate-determining step.  相似文献   

2.
A high-affinity (Km = 2.7 x 10(-7) M) energy-requiring methionine-transport system has been characterized in RM 46 and RM 48, two different PAO methionine auxotrophs of Pseudomonas aeruginosa. After 8 s of transport 40--60% of the methionine label in the alcohol extract appears in S-adenosyl-L-methionine (SAM) with the remaining activity in free methionine. Methionine transport required a high degree of structural specificity for transport. Stimulation of transport occurred by addition of glucose or organic acids. The ability of a given substrate to stimulate transport was related to the type of carbon source used for growth. Transport was sensitive to sulfhydryl reagents and required oxidative phosphorylation, as indicated by the inhibitory effects of anaerobiosis, cyanide, and arsenate. The degree of inhibition by arsenate correlated with the level of ATP in the cell. Rapid transport in a SAM-deficient mutant (TM 1) and inhibition by arsenate of transport in this mutant suggested that SAM formation was not directly linked to transport and that ATP supplied energy for transport. Inhibition by arsenate was more severe in glucose- compared to citrate-stimulated cells. This result was also observed with proline transport indicating that this was not a peculiarity of the methionine-transport system. These data emphasize the close link between glucose metabolism, ATP levels, and transport. This ATP level is not so critical for transport in cells metabolizing citrate.  相似文献   

3.
Various biochemical and biophysical studies have demonstrated the existence of a novel iron-uptake mechanism in Pseudomonas aeruginosa, different from that generally described for ferrichrome and ferric-enterobactin in Escherichia coli. This new iron-uptake mechanism involves all the proteins generally reported to be involved in the uptake of ferric-siderophore complexes in Gram-negative bacteria (i.e. the outer membrane receptor, periplasmic binding protein and ATP-binding-cassette transporter), but differs in the behaviour of the siderophore. One of the key features of this process is the binding of iron-free pyoverdin to the outer membrane receptor FpvA in conditions of iron deficiency.  相似文献   

4.
Siderophore-specific induction of iron uptake in Pseudomonas aeruginosa.   总被引:1,自引:0,他引:1  
Pseudomonas aeruginosa has two siderophore-based high-affinity iron-uptake systems utilizing pyoverdin and pyochelin. Using strain IA1, a mutant deficient in production of both siderophores, we have shown that addition of purified siderophore to the growth medium induces expression of specific iron-regulated outer-membrane proteins and increases 55Fe-siderophore transport. Addition of pyoverdin from the parent strain PAO1 or from a clinical strain 0:12 induced expression of an 85 kDa IROMP and increased the rate of 55Fe-pyoverdin transport. Transport rates for 55Fe-PAO1 pyoverdin increased from 1.27 to 3.57 pmol Fe min-1 per 10(9) cells. Addition of purified pyochelin induced expression of a 75 kDa IROMP accompanied with increased 55Fe-pyochelin uptake without affecting 55Fe-pyoverdin transport. 55Fe-pyochelin transport increased from 0.3 to 10.6 pmol min-1 per 10(9) cells. Addition of pyoverdin from the parent strain or a chromatographically distinct pyoverdin caused increased reactivity with an anti-85 kDa mAb in Western blotting, indicating that the same receptor is being induced. These results suggest that P. aeruginosa can respond specifically to the presence of siderophore and moreover that not only can the pyoverdin receptor transport its cognate ferri-pyoverdin but also different ferri-pyoverdins, albeit at a reduced rate.  相似文献   

5.
Pseudomonas aeruginosa has a choline uptake system which is expressed in bacteria grown in the presence of succinate and ammonium chloride as the carbon and nitrogen source, respectively. This system obeys Michaelis-Menten kinetics with an apparent Km value of 53 μM; its activity is not inhibited by high osmolarities in the medium but is partially inhibited by choline metabolites such as betaine and dimethylglycine.  相似文献   

6.
7.
The present M?ssbauer spectroscopic studies of isolated bacterioferritin and whole cells of Pseudomonas aeruginosa have shown that the iron core of bacterioferritin is not altered on isolation. These studies have also shown that the bacterioferritin core is typically 85% oxidized within the cell and may contain a significant proportion of its iron as small clusters during the early stage of the stationary phase of cell growth.  相似文献   

8.
Pseudomonas aeruginosa and members of the Burkholderia cepacia complex often coexist in both the soil and the lungs of cystic fibrosis patients. To gain an understanding of how these different species affect each other's physiology when coexisting, we performed a screen to identify P. aeruginosa genes that are induced in the presence of Burkholderia: A random gene fusion library was constructed in P. aeruginosa PA14 by using a transposon containing a promoterless lacZ gene. Fusion strains were screened for their ability to be induced in the presence of Burkholderia strains in a cross-streak assay. Three fusion strains were induced specifically by Burkholderia species; all three had transposon insertions in genes known to be iron regulated. One of these fusion strains, containing a transposon insertion in gene PA4467, was used to characterize the inducing activity from Burkholderia: Biochemical and genetic evidence demonstrate that ornibactin, a siderophore produced by nearly all B. cepacia strains, can induce P. aeruginosa PA4467. Significantly, PA4467 is induced early in coculture with an ornibactin-producing but not an ornibactin-deficient B. cepacia strain, indicating that ornibactin can be produced by B. cepacia and detected by P. aeruginosa when the two species coexist.  相似文献   

9.
10.
Membrane vesicles were prepared by osmotic lysis of spheroplasts of Pseudomonas aeruginosa strain P14, and the active transport of amino acids was studied. D-Glucose, gluconate, and L-malate supported active transport of various L-amino acids. The respiration-dependent leucine transport was markedly stimulated by Na+. Moreover, without any respiratory substrate, leucine was also transported transiently by the addition of Na+ alone. This transient uptake of leucine was not inhibited either by carbonyl cyanide p-trifluoromethyoxyphenylhydrazone or by valinomycin, but was completely abolished by gramicidin D. Increase in the concentration of Na+ of the medium resulted in a decrease of the Km for L-leucine transport, whereas the Vmax was not significnatly affected. Active transport of leucine was inhibited competitively by isoleucine or by valine, whose transport was also stimulated by Na+. On the other hand, Na+ was not required for the uptake of other L-amino acids tested, but rather was inhibitory for some of them. These results show (i) that a common transport system for branched-chain amino acids exists in membrane vesicles, (ii) that the system requires Na+ for its activity, and (iii) that an Na+ gradient can drive the system.  相似文献   

11.
A binding protein for inorganic phosphate was purified to apparent homogeneity from the shock fluids of phosphate-limited Pseudomonas aeruginosa. The purified protein bound one molecule of phosphate per molecule of binding protein with an average Kd of 0.34 microM. Arsenate, pyrophosphate and polyphosphates up to 15 units long could inhibit the binding of phosphate to the binding protein, although organic phosphates, such as glucose 6-phosphate, glycerol 3-phosphate and adenosine 5'-monophosphate could not. Mutants lacking the phosphate-binding protein were isolated and shown to be deficient in phosphate transport compared with wild-type cells. Two kinetically distinct systems for phosphate uptake could be observed in wild-type cells, with apparent Km values of 0.46 +/- 0.10 microM (high affinity) and 12.0 +/- 1.6 microM (low affinity). In contrast, only a single low-affinity transport system was observable in mutants lacking the binding protein (Km apparent = 19.3 +/- 1.4 microM Pi), suggesting the involvement of the binding protein in the inducible high-affinity phosphate-uptake system of P. aeruginosa.  相似文献   

12.
Acquisition of iron from citrate by Pseudomonas aeruginosa   总被引:2,自引:0,他引:2  
Transport of [14C]citrate, ferric [14C]citrate and [55Fe]ferric citrate into Pseudomonas aeruginosa grown in synthetic media containing citrate, succinate, or succinate and citrate as carbon and energy sources was measured. Cells grown in citrate-containing medium transported radiolabelled citrate and iron, whereas the succinate-grown cells transported iron but not citrate. Binding studies revealed that isolated outer and inner membranes of citrate-grown cells contain a citrate receptor, absent from membranes of succinate-grown cells. [55Fe]Ferric citrate bound to the isolated outer membranes of each cell type. The failure of citrate to compete with this binding suggests the presence of a ferric citrate receptor on the outer membranes of each cell type. Citrate induced the synthesis of two outer-membrane proteins of 41 and 19 kDa. A third protein of 17 kDa was more dominant in citrate-grown cells than in succinate-grown cells.  相似文献   

13.
Three cell-associated elastase precursors with approximate molecular weights of 60,000 (P), 56,000 (Pro I), and 36,000 (Pro II) were identified in Pseudomonas aeruginosa cells by pulse-labeling with [35S]methionine and immunoprecipitation. In the absence of inhibitors, cells of a wild-type strain as well as those of the secretion-defective mutant PAKS 18 accumulated Pro II as the only elastase-related radioactive protein. EDTA but not EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] inhibited the formation of Pro II, and this inhibition was accompanied by the accumulation of Pro I. P accumulated in cells labeled in the presence of ethanol (with or without EDTA), dinitrophenol plus EDTA, or carbonyl cyanide m-chlorophenyl hydrazone plus EDTA. Pro I and Pro II were localized to the periplasm, and as evident from pulse-chase experiments, Pro I was converted to the mature extracellular enzyme with Pro II as an intermediate of the reaction. P was located to the membrane fraction. Pro I but not Pro II was immunoprecipitated by antibodies specific to a protein of about 20,000 molecular weight (P20), which, as we showed before (Kessler and Safrin, J. Bacteriol. 170:1215-1219, 1988), forms a complex with an inactive periplasmic elastase precursor of about 36,000 molecular weight. Our results suggest that the elastase is made by the cells as a preproenzyme (P), containing a signal sequence of about 4,000 molecular weight and a "pro" sequence of about 20,000 molecular weight. Processing and export of the preproenzyme involve the formation of two periplasmic proenzyme species: proelastase I (56 kilodaltons [kDa]) and proelastase II (36 kDa). The former is short-lived, whereas proelastase II accumulates temporarily in the periplasm, most likely as a complex with the 20-kDa propeptide released from proelastase I upon conversion to proelastase II. The final step in elastase secretion seems to required both the proteolytic removal of a small peptide from proelastase II and dissociation of the latter from P20.  相似文献   

14.
In addition to the two siderophores pyoverdine and pyochelin synthesized by Pseudomonas aeruginosa ATCC 15692 (strain PAO1), several siderophores produced by other bacteria or fungi, namely cepabactin, salicylic acid, desferriferrichrysin, desferriferricrocin, desferriferrioxamine B, desferriferrioxamine E and coprogen, were able to promote iron uptake with variable efficiencies into this bacterium. For most of these siderophores, these results were consistent with the growth stimulation produced by the same compounds in a plate bioassay. Desferriferrichrome A, enterobactin and desferriferrirubin, however, did not promote iron uptake, although enterobactin and desferriferrirubin stimulated bacterial growth. These paradoxical data are discussed in view of siderophore-inducible iron uptake systems, as demonstrated recently for enterobactin. Among the strains tested, including the wild-type PAO1, the pyoverdine-less mutant PAO6606 and the two porin-mutants P. aeruginosa H636 (oprF::omega) and P. aeruginosa H673 (oprD::Tn501), only for the porin-OprF mutant were fewer siderophores able to promote iron uptake compared to the other strains. Such results suggest that beside specific routes for iron uptake P. aeruginosa is also able to take up siderophore-liganded iron through OprF.  相似文献   

15.
Summary Incubated in the presence of [55Fe]ferri[14C]pyoverdine, iron-poorPseudomonas aeruginosa accumulated more55Fe than14C over a 60-min period. Distribution studies showed (a) more14C than55Fe in the soluble fraction during the first 20 min, (b) approximately 60% of the55Fe associated with the membranes at 60 min, and (c) approximately 85% of the14C in the soluble fraction at 60 min. Cells osmotically shocked after incubating with [55Fe]ferri[14C]pyoverdine for 60 min released55Fe but not14C, suggesting separation of metal and ligand in the periplasmic space. Whereas the mechanism of dissociation of iron and ligand is not known, the decrease in transport observed in the presence of dipyridyl suggests involvement of reduction in this process. Transport of iron was energized by the proton motive force instead of by intracellular levels of ATP. The hydrogen ion gradient was the major driving force of transport. Cyanide-poisoned cells accumulated more14C than55Fe over 60 min. Here, iron accumulated in the soluble fraction instead of on the membranes.  相似文献   

16.
17.
Chemotaxis in Pseudomonas aeruginosa.   总被引:6,自引:5,他引:1       下载免费PDF全文
A chemotaxis system for Pseudomonas aeruginosa was defined by using the method of Adler. Cells were attracted to compounds in the order ammonium chloride greater than amino acids greater than organic acids. Two sugars were assayed and elicited no response. Comparisons with other model systems are discussed.  相似文献   

18.
Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in the medium during early exponential phase when nitrate was the terminal electron acceptor and then decreased to extinction before midexponential phase. The maximal rate of glucose and gluconate transport was supported by 1 mM nitrate or nitrite as the terminal electron acceptor under anaerobic conditions. The transport rate was greater with nitrate than with nitrite as the terminal electron acceptor, but the greatest transport rate was observed under aerobic conditions with oxygen as the terminal electron acceptor. When P. aeruginosa was inoculated into a denitrifying environment, nitrate reductase was detected after 3 h of incubation, nitrite reductase was detected after another 4 h of incubation, and maximal nitrate and nitrite reductase activities peaked together during midexponential phase. The latter coincided with maximal glucose transport activity.  相似文献   

19.
Pseudomonas aeruginosa rhamnolipid causes ciliostasis and cell membrane damage to rabbit tissue, is a secretagogue in cats, and inhibits epithelial ion transport in sheep tissue. It could therefore perturb mucociliary clearance. We have investigated the effect of rhamnolipid on mucociliary transport in the anesthetized guinea pig and guinea pig and human respiratory epithelium in vitro. Application of rhamnolipid to the guinea pig tracheal mucosa reduced tracheal mucus velocity (TMV) in vivo in a dose-dependent manner: a 10-microgram bolus caused cessation of TMV without recovery; a 5-micrograms bolus reduced TMV over a period of 2 h by 22.6% (P = 0.037); a 2.5-microgram bolus caused no overall changes in TMV. The ultrastructure of guinea pig tracheal epithelium exposed to 10 micrograms of rhamnolipid in vivo was normal. Application of 1,000 micrograms/ml rhamnolipid had no effect on the ciliary beat frequency (CBF) of guinea pig tracheal rings in vitro after 30 min, but 250 micrograms/ml stopped ciliary beating after 3 h. Treatment with 100 micrograms/ml rhamnolipid caused immediate slowing of the CBF (P less than 0.01) of human nasal brushings (n = 7), which was maintained for 4 h. Mono- and dirhamnolipid had equivalent effects. The CBF of human nasal turbinate organ culture was also slowed by 100 micrograms/ml rhamnolipid, but only after 4 h (CBF test, 9.87 +/- 0.41 Hz; control, 11.48 +/- 0.27 Hz; P less than 0.05, n = 6), and there was subsequent recovery by 14 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in the medium during early exponential phase when nitrate was the terminal electron acceptor and then decreased to extinction before midexponential phase. The maximal rate of glucose and gluconate transport was supported by 1 mM nitrate or nitrite as the terminal electron acceptor under anaerobic conditions. The transport rate was greater with nitrate than with nitrite as the terminal electron acceptor, but the greatest transport rate was observed under aerobic conditions with oxygen as the terminal electron acceptor. When P. aeruginosa was inoculated into a denitrifying environment, nitrate reductase was detected after 3 h of incubation, nitrite reductase was detected after another 4 h of incubation, and maximal nitrate and nitrite reductase activities peaked together during midexponential phase. The latter coincided with maximal glucose transport activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号