首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Since the demonstration of color vision in honey bees 100 years ago by Karl von Frisch, appetitive conditioning to color targets has been used as the principal way to access behavioral aspects of bee color vision. Yet, analyses on how conditioning parameters affect color perception remained scarce. Conclusions on bee color vision have often been made without referring them to the experimental context in which they were obtained, and thus presented as absolute facts instead of realizing that subtle variations in conditioning procedures might yield different results. Here, we review evidence showing that color learning and discrimination in bees are not governed by immutable properties of their visual system, but depend on how the insects are trained and thus learn a task. The use of absolute or differential conditioning protocols, the presence of aversive reinforcement in differential conditioning and the degrees of freedom of motor components determine dramatic variations in color discrimination. We, thus, suggest top-down attentional modulation of color vision to explain the changes in color learning and discrimination reviewed here. We discuss the possible neural mechanisms of this modulation and conclude that color vision experiments require a careful consideration of how training parameters shape behavioral responses.  相似文献   

2.
Color constancy is the term given to the ability to recognize the color of objects correctly under different conditions of illumination. For this purpose the visual system must determine the character of the illumination, introduce a correction for it into the spectal composition of the light received from the object, and hence recreate the true color of its surface. Behavioral experiments on fish showed that they possess constant color vision of objects. Electrophysiological experiments on ganglion cells of the color type showed that the simplest mechanisms of correction for illumination are found at the retinal level. An investigation of model algorithms providing for color constancy showed thatthe presence of color vision makes it much easier to recognize the three-dimensional form of objects. This fact compels a reexamination of established views regarding the place and role of color vision in functions of the animal visual system as a whole.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 7, No. 1, pp. 21–26, January–February, 1975.  相似文献   

3.
The remarkable variation in color vision both among and within primate species is receiving increasing attention from geneticists, psychophysicists, physiologists, and behavioral ecologists. It is known that color vision ability affects foraging behavior. Color vision is also likely to have implications for predation avoidance, social behavior, mate choice, and group dynamics, and should also influence the choice of stimuli for cognitive experiments. Therefore, understanding the color vision of a study species is important and of particular significance to scientists studying species with polymorphic color vision (most platyrrhines and some strepsirrhines). The papers in this issue were inspired by a symposium held during the 20th Congress of the International Primatological Society at Turin, Italy, in August 2004. The aim of the symposium was to bring together research from a range of disciplines, using recent methodological advances in molecular, modeling, and experimental techniques, to help elucidate the evolution, ecological importance, and distribution of color vision genotypes and phenotypes. The symposium achieved its aim, and as with most research in expanding disciplines, there are surprises and many questions still to be answered. Further advances will be made using a combination of different approaches involving analyses at the level of molecu1es, types of cell and neural networks, detailed and long-term field work, modeling, and carefully controlled experimentation.  相似文献   

4.
Red-green color vision is strongly suspected to enhance the survival of its possessors. Despite being red-green color blind, however, many species have successfully competed in nature, which brings into question the evolutionary advantage of achieving red-green color vision. Here, we propose a new method of identifying positive selection at individual amino acid sites with the premise that if positive Darwinian selection has driven the evolution of the protein under consideration, then it should be found mostly at the branches in the phylogenetic tree where its function had changed. The statistical and molecular methods have been applied to 29 visual pigments with the wavelengths of maximal absorption at approximately 510-540 nm (green- or middle wavelength-sensitive [MWS] pigments) and at approximately 560 nm (red- or long wavelength-sensitive [LWS] pigments), which are sampled from a diverse range of vertebrate species. The results show that the MWS pigments are positively selected through amino acid replacements S180A, Y277F, and T285A and that the LWS pigments have been subjected to strong evolutionary conservation. The fact that these positively selected M/LWS pigments are found not only in animals with red-green color vision but also in those with red-green color blindness strongly suggests that both red-green color vision and color blindness have undergone adaptive evolution independently in different species.  相似文献   

5.
Among mammals, only the primates have acquired the biological machinery needed for highly acute color vision. That distinction led Gordon Walls, perhaps the foremost authority on comparative vision of this century, to suggest long ago that “the color vision of the higher primates is assuredly a law unto itself, genetically and historically speaking.”1 Primate color vision is indeed unique. One manifestation of this uniqueness is that color vision abilities vary significantly, not only between some groupings of primate species, but, remarkably, among individuals of a considerable number of species. Although the functional significance of these variations remains, in large measure, to be sorted out, the past decade has brought much progress in revealing the mechanisms that underlie variation.  相似文献   

6.
Color vision in man is based upon three different cone types, which are quite likely arranged in a semi-ordered array in the retina. The model proposes that this ordering is an inherent part of the genetic code that sets up the color vision mechanism, and that the specification for each cone type (red, green or blue) also includes a specification for its place in the larger structure of which it is a part. One possible positional mosaic for the three cone types is proposed, together with its degeneracies into anomalous (red-green) color mechanisms. Assuming only one fixed probability for a degenerate transition, the population frequencies for color anomalies predicted from the model agree closely with the observed frequencies.  相似文献   

7.
Like catarrhines, some platyrrhines show exposed and reddish skin, raising the possibility that reddish signals have evolved convergently. This variation in skin exposure and color combined with sex‐linked polymorphic color vision in platyrrhines presents a unique, and yet underexplored, opportunity to investigate the relative importance of chromatic versus achromatic signals, the influence of color perception on signal evolution, and to understand primate communication broadly. By coding the facial skin exposure and color of 96 platyrrhines, 28 catarrhines, 7 strepsirrhines, 1 tarsiiform, and 13 nonprimates, and by simulating the ancestral character states for these traits, we provide the first analysis of the distribution and evolution of facial skin exposure and color in platyrrhini. We highlight ways in which studying the presence and use of color signals by platyrrhines and other primates will enhance our understanding of the evolution of color signals, and the forces shaping color vision.  相似文献   

8.
The evolution of trichromatic color vision in primates may improve foraging performance as well as intraspecific communication; however, the context in which color vision initially evolved is unknown. We statistically examined the hypothesis that trichromatic color vision in primates represents a preexisting bias for the evolution of red coloration (pelage and/or skin) through sexual selection. Our analyses show that trichromatic color vision evolved before red pelage and red skin, as well as before gregarious mating systems that would promote sexual selection for visual traits and other forms of intraspecific communication via red traits. We also determined that both red pelage and red skin were more likely to evolve in the presence of color vision and mating systems that promote sexual selection. These results provide statistical support for the hypothesis that trichromatic color vision in primates evolved in a context other than intraspecific communication with red traits, most likely foraging performance, but, once evolved, represented a preexisting bias that promoted the evolution of red traits through sexual selection.  相似文献   

9.
Ateles spp. and Alouatta spp. are often sympatric, and although they are mainly frugivorous and folivorous, respectively, they consume some of the same fruit species. However, they differ in terms of color vision, which is thought to be important for fruit detection. Alouatta spp. have routine trichromatic color vision, while Ateles spp. presents the classic polymorphism of platyrrhines: heterozygous females have trichromatic color vision, and males and homozygous females have dichromatic vision. Given these perceptual differences, one might expect Alouatta spp. to consume more reddish fruits than Ateles spp., since trichromats have an advantage for detecting fruits of that hue. Furthermore, since Ateles spp. have up to six different color vision phenotypes, as do most other platyrrhines, they might be expected to include fruits with a wider variety of hues in their diet than Alouatta spp. To test these hypotheses we studied the fruit foraging behavior of sympatric Alouatta palliata and Ateles geoffroyi in Costa Rica, and modeled the detectability of fruit via the various color vision phenotypes in these primates. We found little similarity in fruit diet between these two species (Morisita = 0.086). Furthermore, despite its polymorphism, A. geoffroyi consumed more reddish fruits than A. palliata, which consumed more greenish fruits. Our modeling results suggest that most fruit species included in the diet of A. geoffroyi can be discriminated by most color vision phenotypes present in the population. These findings show that the effect of polymorphism in platyrrhines on fruit detection may not be a disadvantage for frugivory. We suggest that routine trichromacy may be advantageous for other foraging tasks, such as feeding on young leaves.  相似文献   

10.
Color vision was tested as part of a study of micro-evolution in three historically-related populations in Mexico. The frequencies of color vision anomalies fall within the range observed for contemporary Latin American populations. The present findings do not support the previously proposed hypothesis concerning the relaxation of selective forces in agricultural and urban populations.  相似文献   

11.
Boynton GM 《Current biology : CB》2002,12(24):R838-R840
Our understanding of how we see color has benefited from the long tradition of visual psychophysics. More recently, models and methods from psychophysics are guiding modern neuroimaging experiments on color vision. Combining the two techniques can lead to discoveries that neither can make alone.  相似文献   

12.
Although most arguments explaining the predominance of polymorphic color vision in platyrrhine monkeys are linked to the advantage of trichromacy over dichromacy for foraging for ripe fruits, little information exists on the relationship between nutritional reward and performance in fruit detection with different types of color vision. The principal reward of most fruits is sugar, and thus it seems logical to investigate whether fruit coloration provides a long-distance sensory cue to primates that correlates with sugar content. Here we test the hypothesis that fruit detection performance via trichromatic color vision phenotypes provides better information regarding sugar concentration than dichromatic phenotypes (i.e., is a color vision phenotype with sufficient red-green (RG) differentiation necessary to "reveal" the concentration of major sugars in fruits?). Accordingly, we studied the fruit foraging behavior of Ateles geoffroyi by measuring both the reflectance spectra and the concentrations of major sugars in the consumed fruits. We modeled detection performance with different color phenotypes. Our results provide some support for the hypothesis. The yellow-blue (YB) color signal, which is the only one available to dichromats, was not significantly related to sugar concentration. The RG color vision signal, which is present only in trichromats, was significantly correlated with sugar content, but only when the latter was defined by glucose. There was in fact a consistent negative relationship between fruit detection performance and sucrose concentration, although this was not significant for the 430 nm and 550 nm phenotypes. The regular trichromatic phenotypes (430 nm, 533 nm, and 565 nm) showed higher correlations between fruit performance and glucose concentration than the other two trichromatic phenotypes. Our study documents a trichromatic foraging advantage in terms of fruit quality, and suggests that trichromatic color vision is advantageous over dichromatic color vision for detecting sugar-rich fruits.  相似文献   

13.
The colors observed by the human eye after a short flash of light of different spectral compositions were studied experimentally. The successive images and changes in their color with time confirm the opponent theory of human color vision.  相似文献   

14.
15.

Background  

Color vision plays a critical role in visual behavior. An animal's capacity for color vision rests on the presence of differentially sensitive cone photoreceptors. Spectral sensitivity is a measure of the visual responsiveness of these cones at different light wavelengths. Four classes of cone pigments have been identified in vertebrates, but in teleost fishes, opsin genes have undergone gene duplication events and thus can produce a larger number of spectrally distinct cone pigments. In this study, we examine the question of large-scale variation in color vision with respect to individual, sex and species that may result from differential expression of cone pigments. Cichlid fishes are an excellent model system for examining variation in spectral sensitivity because they have seven distinct cone opsin genes that are differentially expressed.  相似文献   

16.
Although color plays a prominent part in our subjective experience of the visual world, the evolutionary advantage of color vision is still unclear [1] [2], with most current answers pointing towards specialized uses, for example to detect ripe fruit amongst foliage [3] [4] [5] [6]. We investigated whether color has a more general role in visual recognition by looking at the contribution of color to the encoding and retrieval processes involved in pattern recognition [7] [8] [9]. Recognition accuracy was higher for color images of natural scenes than for luminance-matched black and white images, and color information contributed to both components of the recognition process. Initially, color leads to an image-coding advantage at the very early stages of sensory processing, most probably by easing the image-segmentation task. Later, color leads to an advantage in retrieval, presumably as the result of an enhanced image representation in memory due to the additional attribute. Our results ascribe color vision a general role in the processing of visual form, starting at the very earliest stages of analysis: color helps us to recognize things faster and to remember them better.  相似文献   

17.
Trichromatic color vision in humans results from the combination of red, green, and blue photopigment opsins. Although color vision genes have been the targets of active molecular and psychophysical research on color vision abnormalities, little is known about patterns of normal genetic variation in these genes among global human populations. The current study presents nucleotide sequence analyses and tests of neutrality for a 5.5-kb region of the X-linked long-wave "red" opsin gene (OPN1LW) in 236 individuals from ethnically diverse human populations. Our analysis of the recombination landscape across OPN1LW reveals an unusual haplotype structure associated with amino acid replacement variation in exon 3 that is consistent with gene conversion. Compared with the absence of OPN1LW amino acid replacement fixation since divergence from chimpanzee, the human population exhibits a significant excess of high-frequency OPN1LW replacements. Our results suggest that subtle changes in L-cone opsin wavelength absorption may have been adaptive during human evolution.  相似文献   

18.
The present study evaluated the color vision of 44 patients with Duchenne muscular dystrophy (DMD) (mean age 14.8 years; SD 4.9) who were submitted to a battery of four different color tests: Cambridge Colour Test (CCT), Neitz Anomaloscope, Ishihara, and American Optical Hardy-Rand-Rittler (AO H-R-R). Patients were divided into two groups according to the region of deletion in the dystrophin gene: upstream of exon 30 (n=12) and downstream of exon 30 (n=32). The control group was composed of 70 age-matched healthy male subjects with no ophthalmological complaints. Of the patients with DMD, 47% (21/44) had a red-green color vision defect in the CCT, confirmed by the Neitz Anomaloscope with statistical agreement (P<.001). The Ishihara and the AO H-R-R had a lower capacity to detect color defects--5% and 7%, respectively, with no statistical similarity between the results of these two tests nor between CCT and Anomaloscope results (P>.05). Of the patients with deletion downstream of exon 30, 66% had a red-green color defect. No color defect was found in the patients with deletion upstream of exon 30. A negative correlation between the color thresholds and age was found for the controls and patients with DMD, suggesting a nonprogressive color defect. The percentage (66%) of patients with a red-green defect was significantly higher than the expected <10% for the normal male population (P<.001). In contrast, patients with DMD with deletion upstream of exon 30 had normal color vision. This color defect might be partially explained by a retina impairment related to dystrophin isoform Dp260.  相似文献   

19.
The wavelength discrimination threshold of three goldfish was examined in a series of behavioral experiments. Using an auto-shaping technique, detection thresholds were established for 531 and 648 nm spectral increments presented on a 6.6 cd m–2 white background. Next, discrimination between the wavelengths was established at equal, suprathreshold, intensities. Finally, the intensities of the two stimuli were reduced to establish the intensity threshold for the wavelength discrimination. The results indicate that goldfish, like several mammalian species, can discriminate wavelength at detection threshold intensity. This finding suggests that high color sensitivity is not confined to mammals or dependent upon a very high percentage of wavelength opponent ganglion cells. Rather, high color vision sensitivity may be based upon an inherent sensitivity advantage of wavelength opponent receptive fields compared to non-wavelength opponent receptive fields and be an important selective advantage of wavelength opponency and color vision.  相似文献   

20.
New World monkeys exhibit a color vision polymorphism. It resultsfrom allelic variation of the single-locus middle-to-long wavelengthopsin gene on the X chromosome. Females that are heterozygousfor the gene possess trichromatic vision. All other individualspossess dichromatic vision. The prevailing hypothesis for themaintenance of the color vision polymorphism is through a consistentfitness advantage to heterozygous trichromatic females. Suchfemales are predicted to be more efficient than dichromats whendetecting and selecting fruit. Recent experiments with captivecallitrichid primates provided support for this hypothesis bydemonstrating that color vision phenotype affects behavioralresponses to contrived food targets. Yet, the assumptions thattrichromatic females acquire more calories from fruit, or thatnumber of offspring is linked to caloric intake, remain untested.Here, we assess if, in the wild, heterozygous trichromatic individualsin a group of white-faced capuchins (Cebus capucinus) enjoyan energetic advantage over dichromats when foraging on fruit.Contrary to the assumptions of previous theoretical and experimentalstudies, our analysis of C. capucinus foraging behavior showsthat trichromats do not differ from dichromats in their fruitor energy acquisition rates. For white-faced capuchins, theadvantage of trichromatic vision may be related to the detectionof predators, animal prey, or fruit under mesopic conditions.This result demonstrates the importance of using a fitness currencythat is relevant to individual animals to test evolutionaryhypotheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号