首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Somatic hybrid plants of various ploidy levels obtained after chemical fusion between two dihaploid clones of potato Solanum tuberosum L. have been analysed by cytological, morphological and molecular methods. The hybrid nature of tetraploid and hexaploid plants and the genome dosage in hexaploid hybrids were confirmed by Giemsa C-banding. Tetraploid and hexaploid hybrids showed numerical as well as structural chromosome mutations. The latter occurred mainly in the nuclear organizing chromosome. The tetraploid hybrids were more vigorous than the dihaploid parents as demonstrated by an increase in height, enlargement of leaves, increase in the number of internodes, restored potential for flowering and increased tuber yield. The grouping of tetraploid somatic hybrids into various classes on the basis of leaf morphology revealed that plants with a full chromosome complement were more uniform than aneuploids. Many hexaploid somatic hybrids were also more vigorous than the dihaploid parents and could be grouped into two different classes on the basis of floral colour and tuber characteristics, the differences being due to their different dosage of parental genomes. Most of the tetraploid somatic hybrids showed pollen development halted at the tetrad stage as one of the parental clones contained a S. Stoloniferum cytoplasm. However, one tetraploid plant produced pollen grains with high viability. The chloroplast genome in the hybrid plants was determined by RFLP analysis. All of the hybrids had a cpDNA pattern identical to one parent, which contained either S. Tuberosum or S. Stoloniferum cpDNA. A slight preference for S. Tuberosum plastids were observed in hybrid plants. No correlation between pollen development and plastid type could be detected.  相似文献   

2.
Summary Asymmetric somatic hybrids were obtained by fusion of Solanum tuberosum (PDH40) protoplasts with 300- or 500-Gy irradiated protoplasts of S. brevidens. These radiation doses were sufficient to prevent the growth of the S. brevidens protoplasts. Putative hybrids were selected on the basis of phenotype from regenerated shoots and identified with a S. brevidens-specific probe. From these, 31 asymmetric hybrids were confirmed by morphological characteristics, isoenzyme patterns and RFLP analysis. The morphology of the asymmetric hybrids was intermediate between that of S. tuberosum and symmetric hybrids of both species (obtained without irradiation treatment). Chromosome counts from 17 asymmetric hybrids showed that the chromosome number of the hybrids ranged from 31 to 64. The asymmetric hybrids probably had one or two genome complements (i.e. either 24 or 48 chromosomes) from S. tuberosum and 7–22 chromosomes from S. brevidens. There was no clear correlation between the radiation dose and the degree of elimination of the S. brevidens genome.  相似文献   

3.
Summary In order to produce fertile somatic hybrids, mesophyll protoplasts from eggplant were electrofused with those from one of its close related species, Solanum aethiopicum L. Aculeatum group. On the basis of differences in the cultural behavior of the parental and hybrid protoplasts, 35 somatic hybrid plants were recovered from 85 selected calli. When taken to maturity either in the greenhouse or in the field, the hybrid plants were vigorous, all rapidly overtopping parental individuals. The putative hybrids were intermediate with respect to morphological traits, and all of their organs were larger, particularly the leaves and stems. DNA analysis of the hybrids using flow cytometry in combination with cytological analysis showed that 32 were tetraploids, 1 hexaploid and 2 mixoploids. The hybrid nature of the 35 selected plants was confirmed by a comparison of the isoenzyme patterns of isocitrate dehydrogenase (Idh), 6-phosphogluconate dehydrogenase (6-Pgd) and phosphoglucomutase (Pgm). Chloroplast DNA (ctDNA) restriction analysis using Bam HI revealed that among the 27 hybrid plants analyzed, 10 had S. aethiopicum patterns and the 17 remaining hybrids exhibited bands identical with those of eggplant without any changes. All of the somatic hybrid plants flowered. Both parental plants had 94% stainable pollen, while the hybrids varied widely in pollen viability ranging from 30% to 85%. The somatic hybrids showed high significant variation in fruit production. Nevertheless, there was a tendency for low fertility to be associated often with S. aethiopicum chloroplast type and/or with an abnormal ploidy level, while good fertility was mostly associated with the tetraploid level and eggplant chloroplasts. Interestingly, 2 tetraploid somatic hybrid clones were among the most productive, yielding up to 9 kg/plant. As far as the fertility of the F1 sexual counterpart was concerned, only 2 fruits of 50 g were obtained. Hybrid fertility in relation to phylogenetic affinities of the fusion partners is discussed.  相似文献   

4.
Summary A series of fusion experiments were performed between protoplasts of a cytoplasmic albino mutant of tomato, Lycopersicon esculentum (ALRC), and gamma-irradiated protoplasts of L. hirsutum and the Solanum species S. commersonii, S. etuberosum and S. nigrum. These species were chosen for their different phylogenetic relationships to tomato. In all fusion combinations except from those between ALRC and S. nigrum, green calli were selected as putative fusion products and shoots regenerated from them. They were subsequently analyzed for their morphology, nuclear DNA composition and chloroplast DNA origin. The hybrids obtained between ALRC and L. hirsutum contained the chloroplasts of L. hirsutum and had the flower and leaf morphology of L. esculentum. After Southern blot analysis, using 13 restriction fragment length polymorphisms (RFLPs) randomly distributed over all chromosomes, all hybrids showed L. esculentum hybridization patterns. No chromosomes of L. hirsutum were found. These results indicate that these hybrids were true cybrids.The putative asymmetric hybrids, obtained with S. commersonii and S. etuberosum, showed phenotypic traits of both parents. After hybridization with species-specific repetitive nuclear DNA probes it was found that nuclear material of both parents was present in all plants. In the case of S. nigrum, which combination has the greatest phylogenetic distance between the fusion parents, no hybrid plants could be obtained. The chloroplast DNA of all hybrid plants was of the donor type suggesting that chloroplast transfer by asymmetric protoplast fusion can overcome problems associated with large phylogenetic distances between parental plants.  相似文献   

5.
Leaf protoplasts of two wild species, Solanum nigrum var. gigantea (S. ngr gig) and S. bulbocastanum Dun. (S. blb), were electrofused with leaf protoplasts of two diploid potato clones, H-8105 and ZEL-1136, respectively, in order to confer the late blight-resistance from the wild species to the cultivated potato. The S. ngr gig mesophyll (+) H-8105 mesophyll combination resulted in regenerants of mostly normal ngr phenotype. Two regenerants from this combination were proved to be true hybrids by RAPD analysis but they rooted poorely in vitro and did not survive the transfer to soil. The S. ngr gig (+) H-8105 fusion combination was also performed with H-8105 cell suspension derived protoplasts enabling an easy identification of interspecific fusants on basis of their intermediate morphology. From the S. ngr gig mesophyll (+) H-8105 cultured cell combination, many abnormal shoots were regenerated. The two lines which survived had normal ngr phenotype but the presence of tuberosum (tbr) genome in those regenerants was not confirmed by RAPD analysis. No plants with tbr phenotype were obtained from both of S. ngr gig (+) H-8105 combinations. On the contrary, when S. blb mesophyll protoplasts were electrofused with ZEL-1136 mesophyll protoplasts, all regenerated plants had tbr phenotype, indicating much lower morphogenetic potential of S. bulbocastanum in comparison with that of S. nigrum var. gigantea. However, the hybridity of those regenerants has not been confirmed by RAPD analysis with two different primers. The efficiency of the applied fusion procedure and analysis of the regenerants is discussed.  相似文献   

6.
Summary Protoplasts of 6-azauracil (AU) resistant cell lines of Solanum melongena L. were fused with protoplasts of S. sisymbriifolium Lam. to create somatic hybrids between these sexually-incompatible species. Following fusion, colonies were selected which were capable of growth in medium containing 1mM AU. These colonies were placed on medium containing zeatin which had been shown to stimulate anthocyanin production during shoot organogenesis in tissue explants of S. sisymbriifolium but not in S. melongena. A total of 37 anthocyanin-producing colonies were identified from which 26 hybrid plants were regenerated. The morphological traits intermediate to those of the parents included: flower colour, leaf shape, and trichome density. Cytogenetic analysis revealed that all hybrids were aneuploids but their chromosome numbers were close to the expected number of 48. Isozyme analysis revealed that nuclear genes of both parents were expressed in the hybrids. In addition, isoelectric focussing of the large subunit of ribulose 1,5-bisphosphate carboxylase (Rubisco) provided evidence that each hybrid expressed only the S. sisymbriifolium chloroplast genome. All hybrids regenerated thus far have been sterile.Contribution No. 787 Ottawa Research Station  相似文献   

7.
This paper discusses a number of experiments performed, involving the fusion by an electric field of mesophyll protoplasts from Solanum tuberosum cv. Bintje, S. tuberosum dihaploid clones 243, 299 and the wild tuberous disease-resistant species S. bulbocastanum and S. pinnatisectum. Three fusion experiments (S. bulbocastanum + S. tuberosum dihaploid 243, S. pinnatisectum + S. tuberosum cv. Bintje and S. pinnatisectum + S. tuberosum dihaploid 299) yielded 542 calli, the 52 ones of which produced shoots. Obtained regenerants were estimated by the flow-cytometry (FC) and RAPD analysis to determine hybrid plants.The utilisation of the FC as a useful method for detecting somatic hybrids is also discussed in this paper. The combination S. bulbocastanum + S. tuberosum dihaploid 243 led to the creation of eight somatic hybrids, the combination S. pinnatisectum + S. tuberosum cv. Bintje yielded four somatic hybrids and the combination S. pinnatisectum + S. tuberosum dihaploid 299 resulted in no hybrid regenerants. Morphology in vitro, growth vigour and production of tuber-like structures were evaluated in hybrid plants. Plants were transferred in vivo for further estimation (acclimatization, habitus evaluation and tuberization ability).  相似文献   

8.
The mesophyll protoplasts were isolated from the Solanum tuberosum (S. tbr) clones of different ploidy level (4x Bzura cv., 2x H-8105, and 2x ZEL-1136) as well as from the wild species: S. bulbocastanum (S. blb, 2x) and two accessions of S. nigrum (S. ngr, 6x). Additionally, the protoplasts were isolated from the cell suspensions of Bzura cv. and H-8105 clone. The conditions of protoplast isolation as well as the media for their culturing and regeneration, were selected and optimized for the studied genotypes. For mesophyll protoplasts, the shooting calli were produced by all the cultured protoclones except that of S. bulbocastanum. The shoots excised from the protoplast-derived calli developed into whole plants in all the studied potato clones but only in one accession of S. nigrum, i.e. S. ngr var. gigantea. As for suspension-cell-derived protoplasts, only H-8105 clone produced the regenerative type of calli, though normal shoots could not be obtained. The regenerative capacity of the protoplasts isolated from leaves and cell suspensions is compared and discussed. We regret to report the death of M. Sc. Maria Borkowska after the completion of this work.  相似文献   

9.
Summary Conditions are described for large scale electrofusion of mesophyll protoplasts of dihaploid S. tuberosum with those of diploid S. brevidens. Overall fusion frequencies of 20%–30% were achieved, and following fusion, large numbers of protoplast-derived calli were obtained. Putative somatic hybrid plants were selected from the regenerated shoots by examining their morphological characteristics. Twenty-one somatic hybrids were confirmed by isoenzyme analysis and six somatic hybrids were further confirmed by Southern hybridization. Tetraploid hybrids were obtained, but cytogenetic studies indicated that more of the regenerated hybrids were hexaploid than had previously been found following chemical fusion of the same partners. Some advantages of electrofusion over chemical fusion are discussed.  相似文献   

10.
Summary Two sets of somatic hybrids between Solanum brevidens (2x) and S. tuberosum (2x and 4x) were evaluated for male fertility, meiotic regularity and female fertility. The somatic hybrids were tetraploids from 2x + 2x fusions and hexaploids from 2x + 4x fusions. Pollen stainability ranged from 0 to 83% in tetraploids and from 0 to 23% in hexaploids. The tetraploids had more regular meiosis, lower levels of micropollen and fewer unassociated chromosomes than hexaploids. However, except for a low level of selfing, the pollen of both sets of hybrids was ineffective in pollinations. The tetraploids, as females, crossed poorly with 2x and 4x tester species and selfed only at low levels. The hexaploid fusion hybrids also crossed poorly with the 2x tester species and selfed only to a limited degree; however, they crossed well with 4x testers. Seed set in crosses with S. tuberosum Group Andigena, and S. tuberosum Group Tuberosum cultivars Kathadin and Norland averaged 16.7, 15.6 and 28.6 seeds per fruit, respectively. Progeny from these crosses had 5x or nearly 5x ploidy levels. The results indicate that reasonable levels of female fertility can be obtained in somatic fusion hybrids of S. brevidens and S. tuberosum.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

11.
Protoplasts were isolated from callus derived from a single homozygous seed of Oryza sativa L. var. Norin 8. Thirty protoclones were randomly selected and these showed variation in regeneration frequency ranging from 0–87% with an average of 52%. The potential for regeneration of each protoclone as reflected in the regeneration frequency was analyzed five times over a period of 250 days and showed that the protoclones can be classified into three types, namely: protoclones with high regeneration frequency; protoclones with low regeneration frequency, both of which maintained their respective levels of regeneration potential; and protoclones with gradually decreasing regeneration frequency. Secondary protoclones established from protoplasts isolated from some of these protoclones and regenerated 2–3 times for a period of 120 days also showed further reduction in regeneration frequency. The polypeptide composition analyzed by two dimensional gel electrophoresis suggests the presence of specific polypeptides related to regeneration potential. Analysis of ploidy level based on plant morphology and pollen size suggests the predominance of tetraploids among the regenerated plants.  相似文献   

12.
Summary A modified protoplast isolation technique, applicable to a range of dihaploidSolanum tuberosum genotypes, has been developed. A combination of high calcium and high pH was used to fuse mesophyl protoplasts of dihaploidS. tuberosum (PDH40) and the diploid wild speciesS. brevidens. Large numbers of colonies were obtained after fusion and putative hybrids selected on the basis of phenotype from regenerated shoots. From these, 11 somatic hybrid plants have been identified by their isoenzyme patterns and morphologic characteristics. Four of these hybrids had the expected chromosome number of 48. The approach of mass culture after fusion followed by selection of hybrids from regenerated shoots and the application of somatic hybridization to potato breeding are discussed.  相似文献   

13.
Summary Fifty-eight somatic hybrid plants, produced both by chemical (11) and electrical fusion (47) of protoplasts of dihaploid Solanum tuberosum and S. brevidens, have been analysed by molecular, cytological and morphological methods. The potentially useful euploid plants constituted 34% of the total, of which 20% were tetraploid and 14% hexaploid; the remainder were aneuploid at the tetraploid, hexaploid and octoploid levels. Analysis of chloroplast DNA showed that 55% of hybrids contained chloroplasts from S. brevidens and 45% from S. tuberosum. Hexaploids, the products of three protoplasts fusing together, were analyzed with specific DNA probes, and this revealed that nuclear genome dosages could be either 21 S. tuberosumS. brevidens, or vice-versa. Chloroplast types of hexaploids were not influenced by nuclear genome dosage, and all six possible combinations of genome dosage and chloroplast types were found amongst tetraploids and hexaploids. To examine the morphology of the hybrid population and its possible relation to the chromosome number and chloroplast DNA type, 18 morphological characteristics were measured on greenhouse-grown plants and analyzed by principal component and canonical variate analyses. Both analyses showed that nuclear ploidy has the most prominent influence on the overall morphology of the hybrids. Differential parental genome expression in the morphology of the hybrids is discussed. These results provide useful data on the range of genetic combinations that can be expected to occur amongst somatic hybrid plants.  相似文献   

14.
The breeding value of tetraploid F1 hybrids between tetrasomic tetraploid S. tuberosum and the disomic tetraploid wild species S. acaule was examined. The F1 hybrids showed a tuber yield and appearance comparable to those of their cultivated parent, indicating a potential as acceptable breeding stocks despite the 50% contribution to their pedigree from wild S. acaule. The cytological behavior of the tetraploid F1 hybrids was examined to determine the probability of recombination for the introgression of S. acaule genes. The majority of the meiotic configurations at metaphase I was bivalents and univalents with mean frequencies of 17.6 and 9.9, respectively. Further, a low frequency of trivalents and quadrivalents was observed. An acceptable low level of meiotic irregularities were observed at the later stages of microsporogenesis, and a reasonable level of pollen stainability was obtained. Therefore, these hybrids could likely be employed for further introgression. From the cytological observations, the following speculations were drawn: (1) some genomic differentiation exists between the S. acaule genomes, (2) at least one of the S. acaule genomes may be homoeologous to the S. tuberosum genomes, (3) intergenomic recombination would likely occur due to the nature of the genomic constitution of the hybrids, and (4) the nature of sesquiploidy of the hybrids may facilitate efficient introgression and establishment of unique aneuploid and euploid recombinant genetic stocks.  相似文献   

15.
We have examined the inheritance of 20 rapeseed (Brassica napus)-specific RAPD (randomly amplified polymorphic DNA) markers from transgenic, herbicide-tolerant rapeseed in 54 plants of the BC1 generation from the cross B. junceax(B. junceaxB. napus). Hybridization between B. juncea and B. napus, with B. juncea as the female parent, was successful both in controlled crosses and spontaneously in the field. The controlled backcrossing of selected hybrids to B. juncea, again with B. juncea as the female parent, also resulted in many seeds. The BC1 plants contained from 0 to 20 of the rapeseed RAPD markers, and the frequency of inheritance of individual RAPD markers ranged from 19% to 93%. The transgene was found in 52% of the plants analyzed. Five synteny groups of RAPD markers were identified. In the hybrids pollen fertility was 0–28%. The hybrids with the highest pollen fertility were selected as male parents for backcrossing, and pollen fertility in the BC1 plants was improved (24–90%) compared to that of the hybrids.  相似文献   

16.
Protoplast fusion between incongruent Solanum bulbocastanum and S. tuberosum haploids was accomplished to produce hybrids combining elite traits from both parents. We identified 11 somatic hybrids out of 42 regenerants analyzed through ISSR markers. Some hybrids had loss or gain of fragments compared to the parents, likely due to rearrangements and deletions of chromosome segments after fusion, and/or to somaclonal variation during hybrid regeneration. Increased heterotic vigor for some traits as well as high diversity was observed as the effect of both ploidy and fusion combination. Microsporogenesis analysis indicated the occurrence of multivalent configurations and several meiotic abnormalities, such as chromosomes bridges and various spindle orientations. Since all hybrids were sterile, in vitro anther culture was employed for haploidization as a possible strategy to overcome barriers to hybridizations. Haploids were obtained from all the tetraploid S. bulbocastanum (+) S. tuberosum somatic hybrids tested, although with differences in both the number of embryos per 100 anthers cultured and the number of differentiated green plantlets. This is the first report on the successful production of haploid plants from S. bulbocastanum (+) S. tuberosum hybrids.  相似文献   

17.
Producing hybrid seed requires an efficient pollination control system to prevent unwanted self-pollination. For further breeding, it would be advantageous to restore pollen fertility in the hybrids. In this work we demonstrate the use of tapetum-specific expression of a stilbene synthase (sts) transgene to induce pollen sterility in tobacco as has been shown previously. The sts-coding region was flanked by loxP recognition sites for Cre-recombinase. From 10 T0-plants obtained, five proved to be male-sterile. They had smaller flowers with shorter stamina, but the vegetative phenotype was just as in the wild-type. Crossing male-sterile sts-plants with tobacco lines expressing the cre recombinase transgene resulted in site-specific recombination in the hybrids. GUS activity caused by fusion of the tap1-promoter with a promoterless gusA coding region indicated recombination events already in early stages of flower bud development. In all plants which had contained single or double sts-copies before crossing, these were excised, and pollen fertility was fully restored. The phenotype of these restored plants was as in wild-type controls. Contrary, from male sterile plants containing multiple copies of the sts-gene, not all copies were removed, and pollen sterility was maintained.  相似文献   

18.
Somatic fusion of mesophyll protoplasts was used to produce hybrids between the frost-tolerant species Solanum commersonii (2n=2x=24) and dihaploid S. tuberosum (2n=2x=24). This is a sexually incompatible combination due to the difference in EBN (Endosperm Balance Number, Johnston et al. 1980). Species with different EBNs as a rule are sexually incompatible. Fifty-seven hybrids were analysed for variation in chromosome number, morphological traits, fertility and frost tolerance. About 70% of the hybrids were tetraploid, and 30% hexaploid. Chloroplast counts in stomatal guard cells revealed a low frequency of cytochimeras. The frequency of aneuploids was relatively higher at the hexaploid level (hypohexaploids) than at the tetraploid level (hypotetraploids). The somatic hybrids were much more vigorous than the parents, and showed an intermediate phenotype for several morphological traits and moderate to profuse flowering. Hexaploid hybrid clones were less vigorous and had a lower degree of flowering than the tetraploid hybrid clones. All of the hybrids were female fertile but male sterile except for one, which was fully fertile and self-compatible. Many seeds were produced on the latter clone by selfing and on the male-sterile clones by crossing. The somatic hybrid plants showed an introgression of genes for frost tolerance and an adaptability to cold from S. commersonii. Therefore, the use of these somatic hybrids in breeding for and in genetic esearch on frost tolerance and cold-hardening is suggested.  相似文献   

19.
Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which corresponded to the sum of the parental genomes. From the asymmetric fusions, 11 hybrids contained 38 chromosomes. Among the other asymmetric hybrids, plants with 50 chromosomes and with chromosome numbers higher than the sum of the parental chromosomes were found. When different root squashes of the same plant were analysed, a total of 6 plants were found that had different chromosome numbers.  相似文献   

20.
Summary Many somatic fusion hybrids have been produced between a dihaploid potato Solanum tuberosum and the sexually-incompatible wild species S. brevidens using both chemical and electrical fusion techniques. S. brevidens was resistant to both potato leaf roll virus (PLRV) and potato virus Y (PVY), the viruses being either at low (PLRV) or undetectable (PVY) concentrations as determined by enzyme-linked immunosorbent assay (ELISA). The S. tuberosum parent was susceptible to both viruses. A wide range of resistance, expressed as a decrease in virus concentration to both viruses was found amongst fusion hybrids, four of which were especially resistant. The practicality of introducing virus resistance from S. brevidens into cultivated potatoes by somatic hybridisation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号