首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have made deletions of the HIS4 5' noncoding region in vitro and inserted these deletions into the yeast genome by transformation. Deletions that extend from -588 to -235 have no detectable effects on either promoter or regulatory functions. Deletions that extend to -138 affect promoter function, but are still regulated by the general control of amino acid biosynthesis. A deletion that extends to -136 cannot derepress HIS4 mRNA in response to the general control. This deletion removes all copies of the sequence 5'-TGACTC-3', which appears at positions -194, -182 and -138 in strains without the deletion. The importance of at least one copy of this repeat for regulation of HIS4 is shown by the reappearance of this sequence in revertants of the -136 deletion that have regained the regulatory response. The fact that deletion of this sequence leads to the inability to derepress suggests that HIS4 is under positive control.  相似文献   

4.
5.
6.
7.
8.
Multiple upstream AUG codons mediate translational control of GCN4   总被引:129,自引:0,他引:129  
P P Mueller  A G Hinnebusch 《Cell》1986,45(2):201-207
  相似文献   

9.
10.
11.
We have mutated various features of the 5' noncoding region of the HIS4 mRNA in light of established Saccharomyces cerevisiae and mammalian consensus translational initiator regions. Our analysis indicates that insertion mutations that introduce G + C-rich sequences in the leader, particularly those that result in stable stem-loop structures in the 5' noncoding region of the HIS4 message, severely affect translation initiation. Mutations that alter the length of the HIS4 leader from 115 to 39 nucleotides had no effect on expression, and sequence context changes both 5' and 3' to the HIS4 AUG start codon resulted in no more than a twofold decrease of expression. Changing the normal context at HIS4 5'-AAUAAUGG-3' to the optimal sequence context proposed for mammalian initiator regions 5'-CACCAUGG-3' did not result in stimulation of HIS4 expression. These studies, in conjunction with comparative and genetic studies in S. cerevisiae, support a general mechanism of initiation of protein synthesis as proposed by the ribosomal scanning model.  相似文献   

12.
13.
Different cis acting elements of gamma kafirin gene from Sorghum bicolor var. M 35-1 were amplified and cloned using different combination of the primers. The amplified promoter was replaced with CaMV35S promoter of vector pCMBIA-1304 and resultant vector contained beta-glucuronidase (gus) gene under the control of amplified gamma-kafirin promoter. The resulting fusants were then transformed in to different explants of sorghum via particle bombardment. The regulation of uid gene expression was analyzed to find out the minimum required 5' regulatory sequence and cis acting elements for the efficient expression. However no gus expression was detected in leaves of micropropagated plants, scutellum and calli at any stage of growth. The expression of gus, with pKaf gus-P4 gene construct, was detected in immature embryos and endosperm 20 days after pollination (DAP). The result suggest that at least three motifs (two GCN4 and one prolamin box) besides TATA and CATC boxes are required for the efficient expression of the kafirin gene of sorghum. The study shows that PCR based isolation of different motifs and regions can be used as an alternate to deletion analysis for observing the role of various motifs and their importance in the gene expression and regulation.  相似文献   

14.
15.
16.
17.
18.
The common nodulation locus and closely linked nodulation genes of Bradyrhizobium (Arachis) sp. strain NC92 have been isolated on an 11.0-kb EcoRI restriction fragment. The nucleotide sequence of a 7.0-kb EcoRV-EcoRI subclone was determined and found to contain open reading frames (ORFs) homologous to the nodA, nodB, nodD1, nodD2, and nolA genes of Bradyrhizobium japonicum and Bradyrhizobium elkanii. Nodulation assays of nodD1, nodD2, or nolA deletion mutants on the host plants Macroptilium atropurpureum (siratro) and Vigna unguiculata (cowpea) indicate that nolA is required for efficient nodulation, as nolA mutants exhibit a 6-day nodulation delay and reduced nodule numbers. The nolA phenotype was complemented by providing the nolA ORF in trans, indicating that the phenotype is due to the lack of the nolA ORF. nodD1 mutants displayed a 2-day nodulation delay, whereas nodD2 strains were indistinguishable from the wild type. Translational nodA-lacZ, nodD1-lacZ, nodD2-lacZ, and nolA-lacZ fusions were created. Expression of the nodA-lacZ fusion was induced by the addition of peanut, cowpea, and siratro seed exudates and by the addition of the isoflavonoids genistein and daidzein. In a nodD1 or nodD2 background, basal expression of the nodA-lacZ fusion increased two- to threefold. The level of expression of the nodD2-lacZ and nolA-lacZ fusions was low in the wild type but increased in nodD1, nodD2, and nodD1 nodD2 backgrounds independently of the addition of the inducer genistein. nolA was required for increased expression of the nodD2-lacZ fusion. These data suggest that a common factor is involved in the regulation of nodD2 and nolA, and they are also consistent with a model of nod gene expression in Bradyrhizobium (Arachis) sp. strain NC92 in which negative regulation is mediated by the products of the nodD1 and nodD2 genes.  相似文献   

19.
20.
The quality of the wheat grain is determined by the quantity and composition of storage proteins (prolamins) which are synthesized exclusively in endosperm tissue. We are investigating the mechanisms underlying the regulation of expression of a prolamin gene, the low molecular weight glutenin gene LMWG-1D1. The LMWG-1D1 promoter contains the endosperm box, a sequence motif highly conserved in the promoter region of a large number of storage protein genes, which is thought to confer endosperm-specific expression of prolamin genes. Here we show by in vivo DMS footprinting of wheat endosperm tissue that the endosperm box becomes occupied by putative trans-acting factors during grain ripening. During early stages of development the endosperm motif within the 5' half of the endosperm box becomes occupied first, followed by binding of a second activity to a GCN4/jun-like motif in the 3' half just prior to the stage of maximum gene expression. Occupancy of the endosperm box is highly tissue-specific: no protection was observed in husk and leaf tissues. Several binding activities were identified in vitro from nuclear protein extracts of wheat endosperm which bind specifically to the endosperm and GCN4/jun motifs identified by in vivo footprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号