首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bending flexibility of six tetramers was studied in an assumption that they were extended in the both directions by regular double helices. The bends of B-DNA in different directions were considered. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less pronounced than in the perpendicular direction by the order of magnitude. Such an anisotropy is a feature of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5-7 degrees, are in agreement with the experimental value of DNA persistence length. Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove, moreover, they have an equilibrium bend of 6-12 degrees into this groove. The above inequality is caused by the stacking interaction of the bases. The bend in the central dimers is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is unessential, so that DNA remains within the limits of the B-family of forms: namely, when the helical axis is bent by 20 degrees the backbone dihedral angles vary by no more than 15 degrees. The obtained results are in accord with the X-ray structure of B-DNA dodecamer; they further substantiate our earlier model of DNA wrapping in the nucleosome by means of "mini-kinks" separated by a half-pitch of the double helix, i.e. by 5-6 b. p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimensional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in the equilibrium structure of certain DNA fragments. To the four "Calladine rules" two more can be added: the minor-groove steric clash of purines in the YR sequences are avoided by: (1) bending of the helix into the major groove; (2) increasing the distance between the base pairs (stretching the double helix).  相似文献   

2.
Abstract

Bending flexibility of the six tetrameric duplexes was investigated d(AAAA):d(TTTT), d(AATT)2, d(TTAA) 2, d(GGGG):d(CCCC), d(GGCC) 2 and d(CCGG) 2. The tetramers were extended in the both directions by regular double helices. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less than that in the perpendicular direction by an order of magnitude. Such an anisotropy is a property of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5–7°, are in agreement with experimental value of the DNA persistence length.

Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove. Moreover, they have an equilibrium bend of 6–12° into this groove. The above inequality is caused by stacking interaction of the bases.

The bend in the central dimer is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is inessential, so that DNA remains within the B-family of forms: namely, when the helical axis is bent by 20°, the backbone dihedral angles vary by no more than 15°.

The obtained results are in accord with x-ray structure of the B-DNA dodecamer; they further substantiate our early model of DNA wrapping in the nucleosome by means of “mini-kinks” separated by a half-pitch of the double helix, i.e. by 5–6 b.p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimentional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in equilibrium structure of certain DNA fragments.  相似文献   

3.
Sequence-dependent bending of DNA and phasing of nucleosomes   总被引:5,自引:0,他引:5  
Conformational analysis has revealed anisotropic flexibility of the B-DNA double helix: it bends most easily into the grooves, being the most rigid when bent in a perpendicular direction. This result implies that DNA in a nucleosome is curved by means of relatively sharp bends ("mini-kinks") which are directed into the major and minor grooves alternatively and separated by 5-6 base pairs. The "mini-kink" model proved to be in keeping with the x-ray structure of the B-DNA dodecamer resolved later, which exhibits two "annealed kinks", also directed into the grooves. The anisotropy of B DNA is sequence-dependent: the pyrimidine-purine dimers (YR) favor bending into the minor groove, and the purine-pyrimidine dinucleotides (RY), into the minor one. The RR and YY dimers appear to be the most rigid dinucleotides. Thus, a DNA fragment consisting of the interchanging oligopurine and oligopyrimidine blocks 5-6 base pairs long should manifest a spectacular curvature in solution. Similarly, a nucleotide sequence containing the RY and YR dimers separated by a half-pitch of the double helix is the most suitable for wrapping around the nucleosomal core. Analysis of the numerous examples demonstrating the specific alignment of nucleosomes on DNA confirms this concept. So, the sequence-dependent "mechanical" properties of the double helix influence the spatial arrangement of DNA in chromatin.  相似文献   

4.
Abstract

Conformational analysis has revealed anisotropic flexibility of the B-DNA double helix: it bends most easily into the grooves, being the most rigid when bent in a perpendicular direction. This result implies that DNA in a nucleosome is curved by means of relatively sharp bends (“mini-kinks”) which are directed into the major and minor grooves alternatively and separated by 5–6 base pairs. The “mini-kink” model proved to be in keeping with the x-ray structure of the B-DNA dodecamer resolved later, which exhibits two “annealed kinks”, also directed into the grooves.

The anisotropy of B DNA is sequence-dependent: the pyrimidine-purine dimers (YR) favor bending into the minor groove, and the purine-pyrimidine dinucleotides (RY), into the minor one. The RR and YY dimers appear to be the most rigid dinucleotides. Thus, a DNA fragment consisting of the interchanging oligopurine and oligopyrmidine blocks 5–6 base pairs long should manifest a spectacular curvature in solution.

Similarly, a nucleotide sequence containing the RY and YR dimers separated by a half-pitch of the double helix is the most suitable for wrapping around the nucleosomal core. Analysis of the numerous examples demonstrating the specific alignment of nucleosomes on DNA confirms this concept. So, the sequence-dependent “mechanical” properties of the double helix influence the spatial arrangement of DNA in chromatin.  相似文献   

5.
The structural adjustments of the sugar-phosphate DNA backbone (switching of the γ angle (O5′–C5′–C4′–C3′) from canonical to alternative conformations and/or C2′-endo → C3′-endo transition of deoxyribose) lead to the sequence-specific changes in accessible surface area of both polar and non-polar atoms of the grooves and the polar/hydrophobic profile of the latter ones. The distribution of the minor groove electrostatic potential is likely to be changing as a result of such conformational rearrangements in sugar-phosphate DNA backbone. Our analysis of the crystal structures of the short free DNA fragments and calculation of their electrostatic potentials allowed us to determine: (1) the number of classical and alternative γ angle conformations in the free B-DNA; (2) changes in the minor groove electrostatic potential, depending on the conformation of the sugar-phosphate DNA backbone; (3) the effect of the DNA sequence on the minor groove electrostatic potential. We have demonstrated that the structural adjustments of the DNA double helix (the conformations of the sugar-phosphate backbone and the minor groove dimensions) induce changes in the distribution of the minor groove electrostatic potential and are sequence-specific. Therefore, these features of the minor groove sizes and distribution of minor groove electrostatic potential can be used as a signal for recognition of the target DNA sequence by protein in the implementation of the indirect readout mechanism.  相似文献   

6.
W N Hunter  T Brown    O Kennard 《Nucleic acids research》1987,15(16):6589-6606
X-ray diffraction techniques have been used to characterise the crystal and molecular structure of the deoxyoligomer d(C-G-C-A-A-A-T-T-C-G-C-G) at 2.5A resolution. The final R factor is 0.19 with the location of 78 solvent molecules. The oligomer crystallises in a B-DNA type conformation with two strands coiled about each other to produce a duplex. This double helix consists of four A.T and six G.C Watson-Crick base pairs and two C.A mispairs. The mismatched base pairs adopt a "wobble" type structure with the cytosine displaced laterally into the major groove, the adenine into the minor groove. We have proposed that the two close contacts observed in the C.A pairing represent two hydrogen bonds one of which results from protonation of adenine. The mispairs are accommodated in the double helix with small adjustments in the conformation of the sugar-phosphate backbone. Details of the backbone conformation, base stacking interactions, thermal parameters and the hydration are now presented and compared with those of the native oligomer d(C-G-C-G-A-A-T-T-C-G-C-G) and with variations of this sequence containing G.T and G.A mispairs.  相似文献   

7.
The close approach of DNA segments participates in many biological functions including DNA condensation and DNA processing. Previous crystallographic studies have shown that B-DNA self-fitting by mutual groove-backbone interaction produces right-handed DNA crossovers. These structures have opened new perspectives on the role of close DNA-DNA interactions in the architecture and activity the DNA molecule. In the present study, the analysis of the crystal packing of two B-DNA decamer duplexes d(CCIIICCCGG) and d(CCGCCGGCGG) reveals the existence of new modes of DNA crossing. Symmetric left-handed crossovers are produced by mutual fitting of DNA grooves at the crossing point. New sequence patterns contribute to stabilize longitudinal fitting of the sugar-phosphate backbone into the major groove. In addition, the close approach of DNA segments greatly influences the DNA conformation in a sequence dependent manner. This study provides new insights into the role of DNA sequence and structure in DNA-DNA recognition. In providing detailed molecular views of DNA crossovers of opposite chirality, this study can also help to elucidate the role of symmetry and chirality in the recognition of complex DNA structures by protein dimers or tetramers, such as topoisomerase II and recombinase enzymes. These results are discussed in the context of the possible relationships between DNA condensation and DNA processing.  相似文献   

8.
Abstract

The close approach of DNA segments participates in many biological functions including DNA condensation and DNA processing. Previous crystallographic studies have shown that B-DNA self-fitting by mutual groove-backbone interaction produces right-handed DNA crossovers. These structures have opened new perspectives on the role of close DNA-DNA interactions in the architecture and activity the DNA molecule. In the present study, the analysis of the crystal packing of two B-DNA decamer duplexes d(CCIIICCCGG) and d(CCGCCGGCGG) reveals the existence of new modes of DNA crossing. Symmetric left- handed crossovers are produced by mutual fitting of DNA grooves at the crossing point. New sequence patterns contribute to stabilize longitudinal fitting of the sugar-phosphate backbone into the major groove. In addition, the close approach of DNA segments greatly influences the DNA conformation in a sequence dependent manner. This study provides new insights into the role of DNA sequence and structure in DNA-DNA recognition. In providing detailed molecular views of DNA crossovers of opposite chirality, this study can also help to elucidate the role of symmetry and chirality in the recognition of complex DNA structures by protein dimers or tetramers, such as topoisomerase II and recombinase enzymes. These results are discussed in the context of the possible relationships between DNA condensation and DNA processing.  相似文献   

9.
Conformational analysis of double helices of DNA with parallel arranged sugar-phosphate chains connected by twofold symmetry has been performed. Homopolymers poly(dA).poly(dA), poly(dC).poly(dC), poly(dG).poly(dG) and poly(dT).poly(dT) were studied. For each of the homopolymers all variants of H-bond pairing were checked. The maps of closing of sugar-phosphate backbone were previously computed. By the optimization of potential energy the dihedral angles and helix parameters of relatively stable conformations of parallel stranded polynucleotides were calculated. The dependence of conformational energy on the nucleic base character and the base pair type were studied. Two main conformational regions for favourable "parallel" helix of polynucleotides were found. The former of these two regions coincide with the region of typical conformational parameters of B-DNA. On an average the conformational energy of "parallel" DNA is close to the energy of canonic "antiparallel" B-DNA.  相似文献   

10.
The 1 A resolution X-ray crystal structures of Mg(2+) and Ca(2+) salts of the B-DNA decamers CCAACGTTGG and CCAGCGCTGG reveal sequence-specific binding of Mg(2+) and Ca(2+) to the major and minor grooves of DNA, as well as non-specific binding to backbone phosphate oxygen atoms. Minor groove binding involves H-bond interactions between cross-strand DNA base atoms of adjacent base-pairs and the cations' water ligands. In the major groove the cations' water ligands can interact through H-bonds with O and N atoms from either one base or adjacent bases, and in addition the softer Ca(2+) can form polar covalent bonds bridging adjacent N7 and O6 atoms at GG bases. For reasons outlined earlier, localized monovalent cations are neither expected nor found.Ultra-high atomic resolution gives an unprecedented view of hydration in both grooves of DNA, permits an analysis of individual anisotropic displacement parameters, and reveals up to 22 divalent cations per DNA duplex. Each DNA helix is quite anisotropic, and alternate conformations, with motion in the direction of opening and closing the minor groove, are observed for the sugar-phosphate backbone. Taking into consideration the variability of experimental parameters and crystal packing environments among these four helices, and 24 other Mg(2+) and Ca(2+) bound B-DNA structures, we conclude that sequence-specific and strand-specific binding of Mg(2+) and Ca(2+) to the major groove causes DNA bending by base-roll compression towards the major groove, while sequence-specific binding of Mg(2+) and Ca(2+) in the minor groove has a negligible effect on helix curvature. The minor groove opens and closes to accommodate Mg(2+) and Ca(2+) without the necessity for significant bending of the overall helix.The program Shelxdna was written to facilitate refinement and analysis of X-ray crystal structures by Shelxl-97 and to plot and analyze one or more Curves and Freehelix output files.  相似文献   

11.
Simultaneous binding of two DAPI molecules in the minor groove of (dA)15.(dT)15 B-DNA helix has been simulated by molecular mechanics calculations. The energy minimised structure shows some novel features in relation to binding of DAPI molecules as well as the flexibility of the grooves of DNA helices. The minor groove of the helix expands locally considerably (to 15 angstroms) to accommodate the two DAPI molecules and is achieved by positive propeller twisting of base pairs at the binding site concomitant with small variations in the local nucleotide stereochemistry. The expansion also brings forth simultaneously a contraction in the width of the major groove spread over to a few phosphates. These findings demonstrate another facet of the flexible stereochemistry of DNA helices in which the local features are significantly altered without being propagated beyond a few base pairs, and with the rest of the regions retaining the normal structure. Both the DAPI molecules are engaged in specific hydrogen bonds with the bases and non specific interactions with phosphates. Stacking interactions of DAPI molecules between themselves as well as with sugar-phosphate backbone contribute to the stability of the complex. The studies provide a stereochemical support to the experimental findings that under high drug-DNA ratio DAPI could bind in the 2:1 ratio.  相似文献   

12.
Crystallographic study of one turn of G/C-rich B-DNA   总被引:15,自引:0,他引:15  
The DNA decamer d(CCAGGCCTGG) has been studied by X-ray crystallography. At a nominal resolution of 1.6 A, the structure was refined to R = 16.9% using stereochemical restraints. The oligodeoxyribonucleotide forms a straight B-DNA double helix with crystallographic dyad symmetry and ten base-pairs per turn. In the crystal lattice, DNA fragments stack end-to-end along the c-axis to form continuous double helices. The overall helical structure and, notably, the groove dimensions of the decamer are more similar to standard, fiber diffraction-determined B-DNA than A-tract DNA. A unique stacking geometry is observed at the CA/TG base-pair step, where an increased rotation about the helix axis and a sliding motion of the base-pairs along their long axes leads to a superposition of the base rings with neighboring carbonyl and amino functions. Three-center (bifurcated) hydrogen bonds are possible at the CC/GG base-pair steps of the decamer. In their common sequence elements, d(CCAGGCCTGG) and the related G.A mismatch decamer d(CCAAGATTGG) show very similar three-dimensional structures, except that d(CCAGGCCTGG) appears to have a less regularly hydrated minor groove. The paucity of minor groove hydration in the center of the decamer may be a general feature of G/C-rich DNA and explain its relative instability in the B-form of DNA.  相似文献   

13.
Two monoclonal anti-Z-DNA antibodies, Z22 and Z44, were shown to bind to the oligonucleotides, d(CG)2 and d(CG)3, and to interact with different parts of the helix. 1H nuclear magnetic resonance spectroscopy showed that Fab fragments stabilize an ordered structure in the tetranucleotide d(CG)2. Nuclear Overhauser effects measured in the presence of Z22 Fab indicate a syn conformation of guanine residues of d(CG)2. Intermolecular transfer of saturation between the Fabs and bound d(CG)3 was detected by a saturation of the protein spectrum and observation of changes in the DNA spectrum. Antibodies with deuterated aromatic amino acids were prepared to eliminate the protein aromatic resonances and thereby allow a more detailed analysis of the transfer to the DNA base protons. The greatest transfer with Z44 was to the dC-5 protons although all of the base protons interact with this antibody. Little, if any, transfer to the DNA base protons was observed with Z22. These results are consistent with a Z44 binding site on the convex surface of the Z-helix (analogous to the major groove of B-DNA) and a Z22 binding site on the sugar-phosphate backbone.  相似文献   

14.
An opportunity of designing nontypical double-stranded DNA structures containing nonnatural inserts in a regular nucleotide DNA sequence has been investigated. The looped nucleotide inserts on the basis of adenylates and thymidilates, and nonnucleotide inserts on the basis of phosphodiesters of diethyleneglycol, 1,10-decanediol, and 3-hydroxy-2(hydroxymethyl)tetrahydrofuran were introduced into the backbone of a 32-mer native DNA duplex. These inserts formed the internal loops in the modified double-stranded DNA fragments which were shown to lead to bending of the linear duplex structure by 16 to 83 degrees. The dependencies of the bend angle of dsDNA on the composition and the length of the looped regions were determined. It was established that the bend of the irregular region of dsDNA depended on the electrostatic interaction of the phosphate residues. The tension in the complex structure could be reduced by the introduction of additional nucleotide units opposite the loop, which led to some relaxation of the bent helix. The resulting parameters of the bend values were shown to be in a good agreement with the published data obtained by NMR spectroscopy. It was demonstrated that the variation of the nature or the length of the insert allowed one to regulate the level of the local perturbation of the duplex structure and, thereby, influence both the bend level of the double helix and the destabilization of the modified complex.  相似文献   

15.
A series of potential energy calculations have been carried out to estimate base sequence dependent structural differences in B-DNA. Attention has been focused on the simplest dimeric fragments that can be used to build long chains, computing the energy as a function of the orientation and displacement of the 16 possible base pair combinations within the double helix. Calculations have been performed, for simplicity, on free base pairs rather than complete nucleotide units. Conformational preferences and relative flexibilities are reported for various combinations of the roll, tilt, twist, lateral displacement, and propeller twist of individual residues. The predictions are compared with relevant experimental measures of conformation and flexibility, where available. The energy surfaces are found to fit into two distinct categories, some dimer duplexes preferring to bend in a symmetric fashion and others in a skewed manner. The effects of common chemical substitutions (uracil for thymine, 5-methyl cytosine for cytosine, and hypoxanthine for guanine) on the preferred arrangements of neighboring residues are also examined, and the interactions of the sugar-phosphate backbone are included in selected cases. As a first approximation, long range interactions between more distant neighbors, which may affect the local chain configuration, are ignored. A rotational isomeric state scheme is developed to describe the average configurations of individual dimers and is used to develop a static picture of overall double helical structure. The ability of the energetic scheme to account for documented examples of intrinsic B-DNA curvature is presented, and some new predictions of sequence directed chain bending are offered.  相似文献   

16.
Abstract

A series of potential energy calculations have been carried out to estimate base sequence dependent structural differences in B-DNA. Attention has been focused on the simplest dimeric fragments that can be used to build long chains, computing the energy as a function of the orientation and displacement of the 16 possible base pair combinations within the double helix. Calculations have been performed, for simplicity, on free base pairs rather than complete nucleotide units. Conformational preferences and relative flexibilities are reported for various combinations of the roll, tilt, twist, lateral displacement, and propeller twist of individual residues. The predictions are compared with relevant experimental measures of conformation and flexibility, where available. The energy surfaces are found to fit into two distinct categories, some dimer duplexes preferring to bend in a symmetric fashion and others in a skewed manner. The effects of common chemical substitutions (uracil for thymine, 5-methyl cytosine for cytosine, and hypoxanthine for guanine) on the preferred arrangements of neighboring residues are also examined, and the interactions of the sugar-phosphate backbone are included in selected cases. As a first approximation, long range interactions between more distant neighbors, which may affect the local chain configuration, are ignored. A rotational isomeric state scheme is developed to describe the average configurations of individual dimers and is used to develop a static picture of overall double helical structure. The ability of the energetic scheme to account for documented examples of intrinsic B-DNA curvature is presented, and some new predictions of sequence directed chain bending are offered.  相似文献   

17.
Abstract

Simultaneous binding of two DAPI molecules in the minor groove of (dA)15.(dT)15 B-DNA helix has been simulated by molecular mechanics calculations. The energy minimised structure shows some novel features in relation to binding of DAPI molecules as well as the flexibility of the grooves of DNA helices. The minor groove of the helix expands locally considerably (to 15 Å) to accommodate the two DAPI molecules and is achieved by positive propeller twisting of base pairs at the binding site concomitant with small variations in the local nucleotide stereochemistry. The expansion also brings forth simultaneously a contraction in the width of the major groove spread over to a few phosphates. These findings demonstrate another facet of the flexible stereochemistry of DNA helices in which the local features are significantly altered without being propagated beyond a few base pairs, and with the rest of the regions retaining the normal structure. Both the DAPI molecules are engaged in specific hydrogen bonds with the bases and non specific interactions with phosphates. Stacking interactions of DAPI molecules between themselves as well as with sugar-phosphate backbone contribute to the stability of the complex. The studies provide a stereochemical support to the experimental findings that under high drug-DNA ratio DAPI could bind in the 2:1 ratio.  相似文献   

18.
Changes in the free energy of mutual phosphate group interactions are calculated that accompany bending of the A-, B- and Z-DNA backbones in 0.7, 2.1 and 4.2 mol/l NaCl aqueous solutions. The bending is often found to be favoured in the direction of the double helix grooves; B-DNA prefers bending into the major groove while minor groove is the preferred bending direction of A-DNA in the presence of 0.7 mol/l NaCl. Interestingly, the preferences are reversed in 4.2 mol/l NaCl. Further stabilization of A-DNA and B-DNA backbones is achieved in some cases if bending is combined with suitable local double helix twist alterations. Bending tendencies of Z-DNA backbone are generally weaker and they decrease, in contrast to B-DNA and A-DNA, with the increasing ionic strength.  相似文献   

19.
The crystal structure of the B-DNA hexamer d(CTCGAG) has been solved at 1.9 A resolution by iterative single isomorphous replacement, using the brominated derivative d(CG5BrCGAG), and refined to an R-factor of 18.6% for 120 nonhydrogen nucleic acid atoms and 32 water molecules. Although the central four base pairs form a typical B-form helix, several parameters suggest a transition to an A-like conformation at the termini. Based on this observation, a B-to-A transition was modeled, maintaining efficient base stacking across the junction. The wide minor groove (approximately 6.9 A) is reminiscent of that in the side-by-side double drug-DNA complexes and hosts a double spine of hydration. The global helix axes of the pseudo-continuous helices are at an acute angle of 60 degrees. The pseudocontinuous stacking is reinforced by the minor groove water structure extending between the two duplexes. The crossover point of two pairs of stacked duplexes is at the stacking junction, unlike that observed in the B-DNA decamers and dodecamers. This arrangement may have implications for the structure of a four-way DNA junction. The duplexes are arranged around a large (approximately 20 A diameter) channel centered on a 6(2) screw axis.  相似文献   

20.
S N Rao  P Kollman 《Biopolymers》1990,29(3):517-532
Molecular dynamics simulations on the sequence d(CGCGAATTCGCG)2 have been carried out using both united atom and all-atom representations, and starting the simulations both from a regular repeating B-DNA structure and from the x-ray single crystal B-DNA structure. An all-atom B-DNA simulation on the sequence d(GCGCGCGCGC)2 has also been carried out, in order to compare it with a previous united atom simulation. The helix repeats, H-bonding, sugar pucker profiles, and average torsional angles are all in the range observed in crystallographic and nmr studies for B-DNA helices. In some of the sequences, there is a significant bend in the DNA helices. The individual helix repeats, with focus on 3'CpG5' and 3'GpC5' units, show the opposite helix repeat to that suggested by Calladine's rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号