首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
Zhang SB  Huang J  Zhao H  Zhang Y  Hou CH  Cheng XD  Jiang C  Li MQ  Hu J  Qian RL 《Cell research》2003,13(5):351-360
Using atomic force microscopy (AFM), the dynamic process of the in vitro nucleosome reconstitution followed by slow dilution from high salt to low salt was visualized. Data showed that the histone octamers were dissociatedfrom DNA at 1M NaC1. When the salt concentration was slowly reduced to 650 mM and 300 mM, the core histones bound to the naked DNA gradually. Once the salt concentration was reduced to 50 mM the classic “beads-on-a-string“ structure was clearly visualized. Furthermore, using the technique of the in vitro reconstitution of nucleosome,the mono- and di- nucleosomes were assembled in vitro with both HS2core (-10681 to -10970 bp) and NCR2 (-372to -194 bp) DNA sequences in the 5‘flanking sequence of human b-globin gene. Data revealed that HMG 1/2 and HMG 14/17 proteins binding to both DNA sequences are changeable following the assembly and disassembly of nucleosomes. We suggest that the changeable binding patterns of HMG 14/17 and HMG1/2 proteins with these regulatory elements may be critical in the process of nucleosome assembly, recruitment of chromatin-modifying activities, and the regulation of human b-globin gene expression.  相似文献   

2.
3.
<正>As important subunits of the leading-strand DNA polymerase epsilon,chromatin remodeling,and histone acetylation complexes,the H2A/H2B-like histone-fold domain-containing proteins DNA PO-LYMERASE II SUBUNIT B3 (DPB3) and DPB4 play key roles in nucleosome assembly and heterochromatin maintenance during DNA replication in yeast,Drosophila,and mammals (He et al.,2017;Bellelli et al.,2018;Yu et al.,2018;Casari et al.,2021).  相似文献   

4.
5.
Cover     
正Using yeast model to study histone marks that affects DNA methylation, Gong et al. show that DNA methyltransferase tetramer (Dnmt3a in light green and Dnmt3L in green) reads N-terminal K4 and K36me3 marks of sister histone H3s in one nucleosome to methylate CpG dinucleotide (in orange)  相似文献   

6.
7.
Open access     
正Aims and Scope:GPB publishes high-quality papers from the frontier research in the fields of genomics,proteomics,and bioinformatics.GPB's featured research areas include:Genomics:large-scale data acquisition,integrated studies and technology developments,concerning genome structures,variations,repeat contents and evolution.Other'omics'fields:epigenomics(DNA modifications,nucleosome positioning,histone  相似文献   

8.
open access     
正Aims and Scope:GPB publishes high-quality papers from the frontier research in the fields of genomics,proteomics,and bioinformatics.GPB’s featured research areas include:Genomics:large-scale data acquisition,integrated studies and technology developments,concerning genome structures,variations,repeat contents and evolution.Other‘omics’fields:epigenomics(DNA modifications,nucleosome positioning,histone modifications,chromo-  相似文献   

9.
open access     
正Aims and Scope:GPB publishes high-quality papers from the frontier research in the fields of genomics,proteomics,and bioinformatics.GPB’s featured research areas include:·Genomics:large-scale data acquisition,integrated studies and technology developments,concerning genome structures,variations,repeat contents and evolution.·Other‘omics’fields:epigenomics(DNA modifications,nucleosome positioning,histone modifications,chromo-  相似文献   

10.
11.
12.
HMG proteins are abundant chromosomal non-histone proteins. It has been suggested that the HMG proteins may play an important role in the structure and function of chromatin. In the present study, the binding of HMG proteins (HMG1/2 and HMG14/17) to the core DNA sequence of DNasel hypersensitive site 2 (HS2core DNA sequence, -10681-10970 bp) in the locus control region (LCR) of the human β-like globin gene cluster has been examined by using both the in vitro nucleosome reconstitution and the gel mobility shift assays. Here we show that HMG1/2 can bind to the naked HS2core DNA sequence, however, HMG 14/17 cannot. Using the in vitro nucleosome reconstitution we demonstrate that HMG14/17 can bind to the HS2core DNA sequence which is assembled into nucleosomes with the core histone octamer transferred from chicken erythrocytes. In contrast, HMG 1/2 cannot bind to the nucleosomes reconstituted in vitro with the HS2core DNA sequence. These results indicate that the binding patterns between HMG proteins and t  相似文献   

13.
A nucleosome contains two copies of each histone H2A,H2B,H3 and H4.Histone H3 K4me0 and K36me3are two key chromatin marks for de novo DNA methylation catalyzed by DNA methyltransferases in mammals.However,it remains unclear whether K4me0 and K36me3 marks on both sister histone H3s regulate de novo DNA methylation independently or cooperatively.Here,taking advantage of the bivalent histone H3 system in yeast,we examined the contributions of K4 and K36 on sister histone H3s to genomic DNA methylation catalyzed by ectopically co-expressed murine Dnmt3a and Dnmt3L.The results show that lack of both K4me0 and K36me3 on one sister H3 tail,or lack of K4me0 and K36me3 on respective sister H3s results in a dramatic reduction of 5mC,revealing a synergy of two sister H3s in DNA methylation regulation.Accordingly,the Dnmt3a or Dnmt3L mutation that disrupts the interaction of Dnmt3aADD domain-H3K4me0,Dnmt3LADD domain-H3K4me0,orDnmt3aPWWP domain-H3K36me3 causes a significant reduction of DNA methylation.These results support the model that each heterodimeric Dnmt3a-Dnmt3L reads both K4me0 and K36me3 marks on one tail of sister H3s,and the dimer of heterodimeric Dnmt3a-Dnmt3L recognizes two tails of sister histone H3s to efficiently execute de novo DNA methylation.  相似文献   

14.
Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understand- ing of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and devel- opment, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.  相似文献   

15.
Zhao H  Zhang Y  Zhang SB  Jiang C  He QY  Li MQ  Qian RL 《Cell research》1999,9(4):255-260
The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by using AFM.The 146 bp of DNA wrapped twice around the core histone octamer are clearly visualized.Both the ends of entry/exit of linker DNA are also demonstrated.The dimension of the nucleosome core particles is - 1-4 nm in height and - 13-22 nm in width.In addition,superbeads (width of - 48-57 nm,height of - 2-3 nm )are occasionally revealed,two turns of DNA around the core particles are also detected.  相似文献   

16.
17.
The basic unit of chromatin is the nucleosomal core particle, containing 147 bp of DNA that wraps twice around an octamer of core histones. The core histones bear a highly dynamic N-terminal amino acid tail around 20-35 residues in length and rich in basic amino acids. These tails extending from the surface of nucleosome play an important role in folding of nucleosomal arrays into higher order chromatin structure, which plays an important role in eukaryotic gene regulation. The amino terminal tails protruding from the nuclesomes get modified by the addition of small groups such as methyl, acetyl and phosphoryl groups. In this review, we focus on these complex modi- fication patterns and their biological functions. Moreover, these modifications seem to be part of a complex scheme where distinct histone modifications act in a sequential manner or in combination to form a "histone code" read by other proteins to control the structure and/or function of the chromatin fiber. Errors in this histone code may be involved in many human diseases especially cancer, the nature of which could be therapeutically exploited. Increasing evidence suggests that many proteins bear multiple, distinct modifications, and the ability of one modification to antagonize or synergize the deposition of another can have significant biological consequences.  相似文献   

18.
Histone H1 and its C-terminal lysine rich fragments were recently found to be potent inhibitorsof furin,a mammalian proprotein convertase.However,its role in the regulation of furin-dependent proproteinprocessing remains unclear.Here we report that histone H1 efficiently blocks furin-dependent pro-yonWillebrand factor(pro-vWF)processing in a dose-dependent manner.Coimmunoprecipitation and immunof-luorescence studies confirmed that histone H1 could interact with furin,and the interaction mainly took placeon the cell surface.We noted that histone H1 was released from cells undergoing necrosis and apoptosisinduced by H_2O_2.Our findings suggested that histone H1 might be involved in extracellular and/or intracellu-lar furin regulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号