首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
目的 深部脑刺激(deep brain stimulation,DBS)利用持续的电脉冲高频刺激(high-frequency stimulation,HFS)调控神经元的活动,可望用于治疗更多脑疾病。为了深入了解HFS的作用机制,促进DBS的发展,本文研究轴突HFS在引起轴突阻滞期间神经元胞体的改变。方法 在麻醉大鼠海马CA1区的锥体神经元轴突上施加脉冲频率为100 Hz的1 min逆向高频刺激(antidromic high-frequency stimulation,A-HFS)。为了研究胞体的响应,利用线性垂直排列的多通道微电极阵列,记录刺激位点上游CA1区锥体神经元胞体附近各结构分层上的诱发电位,包括A-HFS脉冲诱发的逆向群峰电位(antidromic population spike,APS)以及A-HFS期间施加的顺向测试脉冲诱发的顺向群峰电位(orthodromic population spike,OPS),并计算诱发电位的电流源密度(current-source density,CSD),用于分析A-HFS期间锥体神经元胞体附近动作电位的生成和传导。结果 锥体神经...  相似文献   

2.
通常采用恒定电脉冲间隔的高频刺激(high-frequency stimulation,HFS),进行深部脑刺激治疗帕金森氏症等运动障碍疾病.为了开发适用于不同脑疾病治疗的新刺激模式,近年来脉冲间隔(inter-pulse-interval,IPI)变化的变频刺激模式受到关注.已有研究表明,即使具有相同的平均电脉冲频率,变频刺激与恒频刺激的治疗效果也不同.我们推测,变频刺激的短小IPI变化就足以改变HFS对于神经元的作用.为了验证此推测,本文在大鼠海马CA1区锥体神经元的输入轴突纤维上交替施加恒频刺激(100或133 Hz,即IPI=10 ms或7.5 ms)和随机变频刺激(100~200 Hz,即IPI=5~10 ms,平均频率为133 Hz),记录并分析刺激下游神经元群体的诱发电位,用于定量评价神经元对于恒频和变频刺激的响应.实验结果表明,持续的恒频刺激使得神经元的响应从最初的同步发放形成的群峰电位(population spike,PS)转变为非同步的动作电位发放(即单元锋电位).但是,当刺激切换为变频模式时,却又可以诱发神经元群体同步产生动作电位,重新形成PS波.并且,变频刺激诱发的PS幅值和神经元发放的同步程度可达基线的单脉冲刺激诱发波的水平.但是,PS的发生率只有脉冲刺激频率的7%左右,表明在持续的变频刺激时,多个脉冲累积的作用才能诱发这种同步的神经元发放.而且PS的出现与前导IPI的长度之间存在一定关系.神经元的轴突和突触等结构对于高频刺激的非线性响应可能是变频刺激诱发同步活动的原因.这些结果表明,变频刺激序列中短小的间隔变化可以产生与恒定间隔不同的调控作用.本文的结果对于揭示脑刺激的作用机制,促进新型刺激模式的开发及其在不同类型脑疾病治疗中的应用具有重要意义.  相似文献   

3.
为了正确检测和研究高频电刺激(high frequencystimulation,HFS)期间神经元的动作电位发放活动,进而深入揭示深部脑刺激治疗神经系统疾病的机制,本课题研究HFS期间锋电位波形的变化.在麻醉大鼠海马CA1区的输入神经通路Schaffer侧支上,施加1~2 min时长的100或者200 Hz顺向高频刺激(orthodromic-HFS,O-HFS),利用微电极阵列采集刺激下游神经元的多通道锋电位信号,并获得由O-HFS经过单突触传导激活的中间神经元的单元锋电位波形及其特征参数.结果表明,O-HFS使得锋电位的幅值明显减小而半高宽明显增加,以基线记录为基准计算百分比值,O-HFS期间锋电位的降支幅值和升支幅值分别可减小20%和40%左右,半高宽则增加10%以上.并且,在大量神经元同时产生动作电位期间,或者在比200 Hz具有更大兴奋作用的100 Hz刺激期间,锋电位波形的改变更多,幅值的减小可达50%,宽度的增加可达20%.可以推测,高频电刺激对于神经元的兴奋作用可能升高细胞膜电位,从而改变细胞膜离子通道的活动特性,导致动作电位波形的改变.这些结果支持深部脑刺激具有兴奋性调节作用的假说,对于正确分析高频电刺激期间神经元锋电位活动具有指导意义,也为进一步研究深部脑刺激(DBS)治疗脑神经系统疾病的机制提供了重要线索.  相似文献   

4.
持续高频刺激改变短刺激产生的神经网络效应   总被引:1,自引:1,他引:0  
不同时长的电脉冲高频刺激(high frequency stimulation,HFS)对于脑神经系统具有不同的作用.其中,数秒时长的短促HFS可通过"点燃"效应制作动物癫痫模型,也可以产生长时间保持的突触可塑性变化,而数分钟以上的长时HFS却可以安全地用于临床的深部脑刺激,治疗多种脑疾病.因此推测,持续的HFS可以改变短促刺激产生的效应.为了验证此推测,在大鼠海马CA1区的输入轴突纤维Schaffer侧支上,分别施加5 s和2 min两种时长的100 Hz HFS,并监测刺激结束后下游神经元群体对于单脉冲测试的响应电位,即群峰电位(population spike,PS).结果显示,5 s短HFS结束时会紧跟后放电痫样活动,并且,从测试脉冲诱发的PS幅值和潜伏期可见,短HFS诱导的兴奋性增强可以维持数十分钟.反之,2 min的长HFS结束时紧随之后的是数十秒无发放活动的静息期,而且,PS在数分钟内即恢复到HFS前的基线水平.这些结果表明,长时HFS的后期刺激可以改变前期短促刺激对于下游神经网络的作用,即消除短刺激可能产生的长时程兴奋效应.此发现对于深入了解高频刺激的作用机制、促进深部脑刺激的临床应用具有重要意义.  相似文献   

5.
闭环刺激是深部脑刺激(deep brain stimulation,DBS)的重要发展方向之一,有望用于治疗多种脑神经系统疾病.与常规开环的长时间持续刺激不同,闭环刺激通常采用短促的高频脉冲序列.而神经元对于高频刺激的响应存在暂态过程,在初期的短时间内会发生很大变化,从而影响闭环刺激的作用.为了研究这种暂态过程,在大鼠海马CA1区传出轴突纤维(alveus)上施加不同频率的恒频以及随机变频的逆向高频刺激(antidromic high-frequency stimulation,A-HFS),并以逆向诱发的群峰电位(antidromically-evoked population spike,APS)的幅值作为指标来考察神经元群体的响应.研究结果表明,100、133和200 Hz的恒频A-HFS初期,APS迅速衰减,脉冲频率越高,APS衰减越快.平均不到1 s时间内APS的幅值就会下降一半以上,100 Hz时的平均半衰期为~0.96 s,频率增加1倍至200 Hz时,平均半衰期缩短至~0.21 s.使用100~200 Hz范围内实时微调脉冲间隔的随机变频刺激,则可以显著延缓神经元响应的衰减速度,延长刺激作用的维持时间.这些结果可以为短促闭环刺激等DBS新模式的开发提供依据.  相似文献   

6.
目的:观察戊四氮对大鼠海马CA1区动作电位(action potential,AP)和兴奋性突触后电流(excitatory postsynaptic current,EPSC)的影响和丙泊酚的拮抗作用。方法:断头法分离Wistar大鼠海马半脑,切片机切出400μm厚度的海马脑片,全细胞电流钳记录CA1区锥体神经元动作电位发放情况,全细胞电压钳记录电刺激Schaeffer侧支/联合纤维诱发的CA1区锥体神经元EPSC的变化。结果:戊四氮使动作电位发放频率增加,EPSC值降低;丙泊酚拮抗戊四氮的作用,使动作电位发放减少甚至消失,EPSC值上升至加入丙泊酚前的2倍左右。结论:丙泊酚拮抗戊四氮对动作电位和EPSC的作用,所以临床上可用于抗癫痫治疗。  相似文献   

7.
液压打击损伤后海马CA1区神经元兴奋性变化的研究   总被引:4,自引:0,他引:4  
为考察脑损伤对海马CA1区锥体神经元电活动的影响并研究大黄素对神经元的超兴奋性和突触传递的作用,应用液压打击大鼠脑损伤模型和细胞外记录方法提取诱发的海马CA1区场兴奋性突触后电位(fPSP)和群峰电位(PS),进行相关的数据处理和分析。发现损伤侧比非损伤侧的fPSP斜率明显升高,PS波峰个教显著增加,而PS潜伏期明显减小;在灌流液中施加大黄素,CA1区诱发场电位明显减弱。研究结果表明:颅脑损伤可造成海马CA1区锥体神经元的迟发性过度兴奋;大黄素对神经元的兴奋性有抑制作用,可能对颅脑损伤后的中枢神经系统具有保护功能。  相似文献   

8.
目的:研究四逆散对创伤后应激障碍(PTSD)及睡眠障碍大鼠海马CA1/CA3区神经元动作电位的影响。方法:SD雄性大鼠50只随机分为5组:空白组、生理盐水组、模型组、四逆散组和帕罗西汀组(n=10)。空白组和生理盐水组正常饲养,其他组用幽闭电击法复制PTSD模型,生理盐水组每天灌胃给予生理盐水10 ml/kg,模型组于造模前1 h灌胃生理盐水10 ml/kg,帕罗西汀组和四逆散组分别于造模前1 h灌胃盐酸帕罗西汀4.2 mg/kg和四逆散2.41 g/kg进行处理,每天1次,连续7 d,造模和干预同时进行。使用在体多通道神经信号采集系统,采集大鼠海马CA1/CA3区神经元动作电位。结果:生理盐水组与空白组大鼠海马CA1/CA3区动作电位发放均多为发散状,且脉冲较密集。与生理盐水组相比,模型组大鼠海马CA1/CA3区动作电位发放脉冲较稀少,电位发放呈簇状。与模型组相比,帕罗西汀组、四逆散组动作电位发放脉冲稍多,呈发散状。与空白组比较,生理盐水组大鼠海马CA1/CA3区平均峰电位发放速率无明显差异,提示灌胃刺激对大鼠海马CA1/CA3区平均峰电位发放速率影响不明显。模型组大鼠海马CA1/CA3区平均峰电位发放速率显著低于生理盐水组,表明幽闭电击能明显抑制海马CA1/CA3区平均峰电位发放速率。与模型组相比,四逆散组和帕罗西汀组大鼠海马CA1/CA3区平均峰电位发放速率均显著升高,提示两药物对PTSD大鼠海马CA1/CA3区单位时间峰电位发放速率有明显调节作用。结论:四逆散对大鼠海马CA1/CA3区神经元时空特性损害有明显的改善作用。  相似文献   

9.
深部脑刺激(deep brain stimulation,DBS)已成为治疗帕金森病等运动障碍疾病的常规方法之一,并且在许多其他神经和精神疾病的治疗中也具有良好的应用前景.但是,目前常规DBS采用单通道恒定脉冲间隔的高频刺激(high frequency stimulation,HFS),刺激模式缺少多样化,限制了DB...  相似文献   

10.
深部脑刺激(deep brain stimulation,DBS)已在临床上广泛用于治疗帕金森病等疾病引起的运动障碍,它在难治性癫痫、顽固性强迫症等其他脑中枢神经系统疾病的治疗上也展现出良好的应用前景.经过30多年的临床应用、动物实验和计算模型仿真等多方面的研究,DBS的机制也逐渐明朗.虽然尚无定论,但已取得许多重要进展.本文从电生理角度分析和总结了有关DBS机制的发展历程.从早期的抑制论和兴奋论到目前主导的调控论;从关注刺激位点的神经元活动,到发现神经元胞体与轴突活动的去耦合,再到高频刺激诱导的间歇性轴突阻滞,以及由此轴突活动可能导致的投射区神经元群体的去同步活动.这一系列研究进展表明DBS具有复杂的神经网络调控机制.了解DBS的作用机制对于提高其疗效、开发新刺激模式以及扩大临床应用的范围都具有重要意义.  相似文献   

11.
全身麻醉若操作不当可能造成致命的中枢神经系统损伤,因此其安全性受到广泛关注.为了揭示麻醉不断加深的过程中神经元活动的变化规律,本文研究了大鼠在乌拉坦(urethane)深度麻醉至脑死亡期间海马区神经元兴奋性和信号传导功能的变化.利用微电极阵列记录和电刺激技术,在海马CA1区胞体层分别记录Schaffer侧支上正向刺激和海马白质上反向刺激诱发的群峰电位(population spike,PS).以PS的幅值和潜伏期为指标,分析海马神经元活动的变化.结果表明,随着乌拉坦血药浓度的增加,PS幅值逐渐减小,潜伏期逐渐延长,意味着乌拉坦抑制了神经元的兴奋性以及轴突传导和突触传递.特别是这些变化存在明显的转折点(即突变),将整个衰减过程分成慢变和快变2个阶段.快变期的剧烈衰减迅速导致脑死亡.而且,引起突变的决定性因素可能是乌拉坦的血药浓度,而非麻醉时间的长短.但是,当乌拉坦注射速率较慢时,延长的慢变期仍然会使神经元功能的受损加重.这些研究结果为动物实验的麻醉操作和临床麻醉的安全应用提供了重要的信息.  相似文献   

12.
Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron–O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron–interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.  相似文献   

13.
Hippocampal mossy fibers (MFs) innervate CA3 targets via anatomically distinct presynaptic elements: MF boutons (MFBs) innervate pyramidal cells (PYRs), whereas filopodial extensions (Fils) of MFBs innervate st. lucidum interneurons (SLINs). Surprisingly, the same high-frequency stimulation (HFS) protocol induces presynaptically expressed LTP and LTD at PYR and SLIN inputs, respectively. This differential distribution of plasticity indicates that neighboring, functionally divergent presynaptic elements along the same axon serve as autonomous computational elements capable of modifying release independently. Indeed we report that HFS persistently depresses voltage-gated calcium channel (VGCC) function in Fil terminals, leaving MFB VGCCs unchanged despite similar contributions of N- and P/Q-type VGCCs to transmission at each terminal. Selective Fil VGCC depression results from HFS-induced mGluR7 activation leading to persistent P/Q-type VGCC inhibition. Thus, mGluR7 localization to MF-SLIN terminals and not MFBs allows for MF-SLIN LTD expression via depressed presynaptic VGCC function, whereas MF-PYR plasticity proceeds independently of VGCC alterations.  相似文献   

14.
15.
The effects of infusion of low concentrations of the synthetic opioid peptide D-Pro4-beta-casomorphin-5(deprolorphin) on electrical field responses in the in vitro hippocampal slice preparation of mice were investigated. Deprolorphin (0.01-10 microM) causes a large enhancement of the population spike (PS) and appearance of additional spikes of CA1 pyramidal cells to Schaffer-commissural stimulation, which were partially antagonized by the opiate receptor antagonist naloxone. It is likely that this analgesic peptide in the hippocampus acts through mu-receptors and neuronal mechanisms already described for morphine and enkephalin analogs.  相似文献   

16.
Using field potential recording in the CA1 region of the rat hippocampal slices, the effects of eugenol on synaptic transmission and long-term potentiation (LTP) were investigated. Population spikes (PS) were recorded in the stratum pyramidal following stimulation of stratum fibers. To induce LTP, eight episodes of theta pattern primed-bursts (PBs) were delivered. Eugenol decreased the amplitude of PS in a concentration-dependent manner. The effect was fast and completely reversible. Eugenol had no effect on PBs-induced LTP of PS. It is concluded that while eugenol depresses synaptic transmission it does not affect the ability of CA1 synapses for tetanus-induced LTP and plasticity.  相似文献   

17.
Mechanisms of gamma oscillations in the hippocampus of the behaving rat   总被引:22,自引:0,他引:22  
Gamma frequency oscillations (30-100 Hz) have been suggested to underlie various cognitive and motor functions. Here, we examine the generation of gamma oscillation currents in the hippocampus, using two-dimensional, 96-site silicon probes. Two gamma generators were identified, one in the dentate gyrus and another in the CA3-CA1 regions. The coupling strength between the two oscillators varied during both theta and nontheta states. Both pyramidal cells and interneurons were phase-locked to gamma waves. Anatomical connectivity, rather than physical distance, determined the coupling strength of the oscillating neurons. CA3 pyramidal neurons discharged CA3 and CA1 interneurons at latencies indicative of monosynaptic connections. Intrahippocampal gamma oscillation emerges in the CA3 recurrent system, which entrains the CA1 region via its interneurons.  相似文献   

18.
A current status of knowledge about high-frequency (140-200 Hz) ripple oscillations in the CA1 hippocampal subfield is summarized and considered in the context of two-stage model of the hippocampal memory processing. A large body of evidence suggests highly-selective recruitment of pyramidal cells and interneurons in the generation of the oscillatory pattern after co-operative sharp-wave-related discharge of CA3 pyramidal neurons. We also discuss a role of transmission via gap junctions in the mechanisms of ripple oscillations as well as their adaptive aminergic (histaminergic) modulation. Patterns of neuronal firing in the hippocampus observed during ripple oscillations reproduce space-dependant neuronal activity from the previous waking period. Together with a data about efficacy of high-frequency stimulation for induction of synaptic modification it points out a role for ripples in the formation of long-term memory. Focal ultra fast ripples (up to 500 Hz) have been shown to participate in the development of temporal lobe epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号