共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
无细胞翻译——利用细胞提取液在体外合成蛋白质,已是国外分子生物学实验室的一项常规技术,但在国内此项技术的利用却几乎是空白.对体外无细胞系统的特性、功能、优缺点及其进展等进行了全面的介绍,以期使国内学者了解和利用这一方便而有效的表达系统,进行应用生物化学与分子生物学的实验研究. 相似文献
4.
5.
6.
7.
无细胞蛋白质合成系统的研究进展 总被引:1,自引:0,他引:1
无细胞蛋白质合成系统是一种以外源mRNA或DNA为模板 ,通过在细胞抽提物的酶系中补充底物和能源物质来合成蛋白质的体外系统 .与传统的体内重组表达系统相比 ,体外无细胞合成系统具有多种优点 ,如可表达对细胞有毒害作用或含有非天然氨基酸 (如D 氨基酸 )的特殊蛋白质 ,能够直接以PCR产物作为模板同时平行合成多种蛋白质 ,开展高通量药物筛选和蛋白质组学的研究等 .本文综述了无细胞蛋白质合成系统的发展历史、系统中合成蛋白质所需的能量供应、遗传模板的稳定性和微型无细胞生物反应器等多方面的研究 ,并探讨了无细胞蛋白质合成系统中存在的难点、研究方向和广泛的应用前景 相似文献
8.
无细胞合成生物系统,能够在体外完成生命转录翻译过程,因体系灵活开放、便于控制、表达周期短、高耐受性等特点,可表达细胞系统难以表达的蛋白质。随着无细胞生物传感和体系冻干技术的不断发展,其在医药健康领域的应用不断拓展。本文综述了无细胞合成生物学在按需生物医药合成和便携式医疗检测等医药健康领域的研究进展,该体系的进一步发展有潜力实现更复杂后修饰蛋白质药物的合成、可丰富无细胞生物传感器类型并提高其灵敏性。无细胞合成生物学作为新兴工程策略,未来必将更好地应用于高通量医药蛋白质筛选、新型病原体的检测等医药健康领域。 相似文献
9.
无细胞蛋白质合成(cell-free protein synthesis,CFPS)是一种在体外快速合成目标蛋白质的方法,通过构建含有CFPS系统的人造细胞,能够实现蛋白质的高通量表达和功能性膜蛋白的体外重构.本文详细综述了4种CFPS系统(包括大肠杆菌裂解液、兔网织红细胞裂解液、小麦胚芽提取物、酵母提取物)的适用范围和优缺点,总结了基于CFPS系统构建的人造细胞体系内蛋白质合成的研究现状,以及该领域面临的挑战及未来的发展方向. 相似文献
10.
海藻非蛋白质氨基酸的研究进展 总被引:1,自引:0,他引:1
海藻非蛋白质氨基酸是海藻中一类重要的生物活性物质,大多具有清热、解毒、驱虫、降血压、防癫痫等功能,本文主要对海藻非蛋白质氨基酸的概念、分类、生物合成、生物功能及其应用、检测分析、分离提取等做一概述,为更好的开发利用这类生物活性物质提供参考. 相似文献
11.
S. V. Burov Yu. E. Moskalenko M. V. Leko M. Yu. Dorosh E. F. Panarin 《Russian Journal of Bioorganic Chemistry》2006,32(6):509-516
N-Amidinoproline, a hybrid structure modeling key features of the Arg-Pro sequence, was synthesized. The activation of carboxyl group of free N-amidinoproline was found to result in the formation of a cyclic side product, whose structure was confirmed by ESI MS, 1H NMR, and 13C NMR spectra. The preparation of N-(mesitylenesulfonylamidino)-L-proline using the mesitylenesulfonyl derivative of 2-methylisothiourea was demonstrated to be accompanied by partial racemization. The target product was synthesized by modification of N-amidinoproline by mesitylenesulfonyl chloride. The possibility of using N-amidinoproline in the N-terminal modification of a peptide chain was shown by the example of synthesis of an analogue of the 95–98 fragment of fibrinogen α chain. 相似文献
12.
13.
14.
R. Wynn P. C. Harkins F. M. Richards R. O. Fox 《Protein science : a publication of the Protein Society》1997,6(8):1621-1626
We have determined by X-ray crystallography the structures of several variants of staphylococcal nuclease with long flexible straight chain and equivalent length cyclic unnatural amino acid side chains embedded in the protein core. The terminal atoms in the straight side chains are not well defined by the observed electron density even though they remain buried within the protein interior. We have previously observed this behavior and have suggested that it may arise from the addition of side-chain vibrational and oscillational motions with each bond as a side chain grows away from the relatively rigid protein main chain and/or the population of multiple rotamers (Wynn R, Harkins P, Richards FM. Fox RO. 1996. Mobile unnatural amino acid side chains in the core of staphylococcal nuclease. Protein Sci 5:1026-1031). Reduction of the number of degrees of freedom by cyclization of a side chain would be expected to constrain these motions. These side chains are in fact well defined in the structures described here. Over-packing of the protein core results in a 1.0 A shift of helix 1 away from the site of mutation. Additionally, we have determined the structure of a side chain containing a single hydrogen to fluorine atom replacement on a methyl group. A fluorine atom is intermediate in size between methyl group and a hydrogen atom. The fluorine atom is observed in a single position indicating it does not rotate like methyl hydrogen atoms. This change also causes subtle differences in the packing interactions. 相似文献
15.
Benjamin C. Buer Jennifer L. Meagher Jeanne A. Stuckey E. Neil G. Marsh 《Protein science : a publication of the Protein Society》2012,21(11):1705-1715
Highly fluorinated analogs of hydrophobic amino acids are well known to increase the stability of proteins toward thermal unfolding and chemical denaturation, but there is very little data on the structural consequences of fluorination. We have determined the structures and folding energies of three variants of a de novo designed 4‐helix bundle protein whose hydrophobic cores contain either hexafluoroleucine (hFLeu) or t‐butylalanine (tBAla). Although the buried hydrophobic surface area is the same for all three proteins, the incorporation of tBAla causes a rearrangement of the core packing, resulting in the formation of a destabilizing hydrophobic cavity at the center of the protein. In contrast, incorporation of hFLeu, causes no changes in core packing with respect to the structure of the nonfluorinated parent protein which contains only leucine in the core. These results support the idea that fluorinated residues are especially effective at stabilizing proteins because they closely mimic the shape of the natural residues they replace while increasing buried hydrophobic surface area. 相似文献
16.
17.
Unnatural amino acid packing mutants of Escherichia coli thioredoxin produced by combined mutagenesis/chemical modification techniques.
下载免费PDF全文

We have produced several mutants of Escherichia coli thioredoxin (Trx) using a combined mutagenesis/chemical modification technique. The protein C32S, C35S, L78C Trx was produced using standard mutagenesis procedures. After unfolding the protein with guanidine hydrochloride (GdmCl), the normally buried cysteine residue was modified with a series of straight chain aliphatic thiosulfonates, which produced cysteine disulfides to methane, ethane, 1-n-propane, 1-n-butane, and 1-n-pentane thiols. These mutants all show native-like CD spectra and the ability to activate T7 gene 5 protein DNA polymerase activity. In addition, all mutants show normal unfolding transitions in GdmCl solutions. However, the midpoint of the transition, [GdmCl]1/2, and the free energy of unfolding at zero denaturant concentration, delta G(H2O), give inverse orders of stability. This effect is due to changes in m, the dependence of delta G0 unfolding on the GdmCl concentration. The method described here may be used to produce unnatural amino acids in the hydrophobic cores of proteins. 相似文献
18.
Dan Groff Nina A. Carlos Rishard Chen Jeffrey A. Hanson Shengwen Liang Stephanie Armstrong Xiaofan Li Sihong Zhou Alex Steiner Trevor J. Hallam Gang Yin 《Biotechnology and bioengineering》2022,119(1):162-175
Recent advances in cell-free protein synthesis have enabled the folding and assembly of full-length antibodies at high titers with extracts from prokaryotic cells. Coupled with the facile engineering of the Escherichia coli translation machinery, E. coli based in vitro protein synthesis reactions have emerged as a leading source of IgG molecules with nonnatural amino acids incorporated at specific locations for producing homogeneous antibody–drug conjugates (ADCs). While this has been demonstrated with extract produced in batch fermentation mode, continuous extract fermentation would facilitate supplying material for large-scale manufacturing of protein therapeutics. To accomplish this, the IgG-folding chaperones DsbC and FkpA, and orthogonal tRNA for nonnatural amino acid production were integrated onto the chromosome with high strength constitutive promoters. This enabled co-expression of all three factors at a consistently high level in the extract strain for the duration of a 5-day continuous fermentation. Cell-free protein synthesis reactions with extract produced from cells grown continuously yielded titers of IgG containing nonnatural amino acids above those from extract produced in batch fermentations. In addition, the quality of the synthesized IgGs and the potency of ADC produced with continuously fermented extract were indistinguishable from those produced with the batch extract. These experiments demonstrate that continuous fermentation of E. coli to produce extract for cell-free protein synthesis is feasible and helps unlock the potential for cell-free protein synthesis as a platform for biopharmaceutical production. 相似文献