首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tadpole stage of tunicates has played a pivotal role in understanding chordate evolution. While the organization of the mesoderm has been given high importance in comparative anatomical studies of Bilateria, this morphological character remains largely unexplored in tunicate tadpoles. For larvae of the phlebobranch ascidian Ciona intestinalis, the presence of two mesodermal pockets had been claimed, raising the possibility that paired coelomes are present in the larval ascidian. Using computer assisted 3D-reconstructions based on complete series of 1 μm-sections analyzed by light microscopy complemented by TEM-investigation of selected regions a comparative anatomical study of tadpole stages from four major tunicate clades, Aplousobranchiata, Phlebobranchiata, Stolidobranchiata, and Appendicularia is presented. In the aplousobranch Clavelina lepadiformis numerous mesodermal cells are found throughout the entire trunk plus the unpaired ventral rudiment of the pericardium. In the phlebobranch Ascidia interrupta, massive mesodermal components occur in the posterior trunk, whereas more anteriorly situated mesoderm consists of loose streaks of cells or isolated cells. This is also the case in the stolidobranch ascidians Herdmania momus and Styela plicata. In the stolidobranch Molgula occidentalis and the appendicularian Oikopleura dioica the anterior trunk is entirely devoid of mesodermal cells. TEM-investigation revealed that all mesodermal structures in the trunk of tunicate tadpoles were mesenchymal with the exception of a ventral portion of the mesoderm in C. lepadiformis, which probably corresponds to the developing pericardium, and the differentiated pericardium of the juvenile O. dioica. Thus no evidence for paired coelomic cavities in Tunicata was found. Outgroup comparison suggests that the reduction of paired coelomic cavities is an apomorphic trait of Tunicata. Within Tunicata a stepwise evolutionary reduction of the anterior larval mesenchyme is documented.  相似文献   

2.
Phylogeny of Tunicata inferred from molecular and morphological characters   总被引:5,自引:0,他引:5  
The phylogeny of the Tunicata was reconstructed using molecular and morphological characters. Mitochondrial cytochrome oxidase I (cox1) and 18S rDNA sequences were obtained for 14 and 4 tunicate species, respectively. 18S rDNA sequences were aligned with gene sequences obtained from GenBank of 57 tunicates, a cephalochordate, and a selachian craniate. Cox1 sequences were aligned with the sequence of two ascidians and a cephalochordate obtained from GenBank. Traditional, morphological, life history, and biochemical characters of larval and adult stages were compiled from the literature and analyzed cladistically. Separate and simultaneous parsimony analyses of molecular and morphological data were carried out. Aplousobranch ascidians from three different families were included in a molecular phylogenetic analysis for the first time. Analysis of the morphological, life history, and biochemical characters results in a highly unresolved tree. Aplousobranchiata form a strongly supported monophylum in the analysis of the 18S rDNA data, the morphological data, and the combined data set. Cionidae is not included in the Aplousobranchiata but nests within the Phlebobranchiata. Appendicularia (=Larvacea) nest within the 'Ascidiacea' as the sister taxon of Aplousobranchiata in the parsimony analysis of the 18S rDNA data and the combined analysis. A potential morphological synapomorphy of Aplousobranchiata plus Appendicularia is the horizontal orientation of the larval tail. In the 18S rDNA and the combined analysis, Thaliacea is included in the 'Ascidiacea' as the sister group to Phlebobranchiata. Pyrosomatida is found to be the sister taxon to the Salpidae in analyses of 18S rDNA and combined data, whereas the analysis of the morphological data recovers a sister group relationship between Doliolidae and Salpidae. Results of cox1 analyses are incongruent with both the 18S rDNA and the morphological phylogenies. Cox1 sequences may evolve too rapidly to resolve relationships of higher tunicate taxa. However, the cox1 data may be useful at lower taxonomic levels.  相似文献   

3.
SUMMARY The phylogenetic position of Brachiopoda remains unsettled, and only few recent data on brachiopod organogenesis are currently available. In order to contribute data to questions concerning brachiopod ontogeny and evolution we investigated nervous and muscle system development in the craniiform (inarticulate) brachiopod Novocrania anomala . Larvae of this species are lecithotrophic and have a bilobed body with three pairs of dorsal setal bundles that emerge from the posterior lobe. Fully developed larvae exhibit a network of setae pouch muscles as well as medioventral longitudinal and transversal muscles. After settlement, the anterior and posterior adductor muscles and delicate mantle retractor muscles begin to form. Comparison of the larval muscular system of Novocrania anomala with that of rhynchonelliform (articulate) brachiopod larvae shows that the former has a much simpler muscular organization. The first signal of serotonin-like immunoreactivity appears in fully developed Novocrania anomala larvae, which have an apical organ that consists of four flask-shaped cells and two ventral neurites. These ventral neurites do not stain positively for the axonal marker α-tubulin in the larval stages. In the juveniles, the nervous system stained by α-tubulin is characterized by two ventral neurite bundles with three commissures. Our data are the first direct proof for the presence of an immunoreactive neurotransmitter in lecithotrophic brachiopod larvae and demonstrate the existence of flask-shaped serotonergic cells in the brachiopod larval apical organ, thus significantly increasing the probability that this cell type was part of the bauplan of the larvae of the last common lophotrochozoan ancestor.  相似文献   

4.
Thomas Stach 《Zoomorphology》2007,126(3):203-214
Appendicularians have always occupied a central role in considerations of tunicate and chordate evolution. Two hypotheses have been proposed – one holds that appendicularia represents the sister taxon to the remaining tunicates, the other suggests that appendicularians were derived from an ascidian-like ancestor. In the present study I report results from electron microscopic investigation of larval tunicates including the first electron microscopic investigation of the tail of the early ontogenetic appendicularian “Streckform” and discuss their phylogenetic implications. The early “Streckform” of Oikopleura dioica Fol, 1872 is invested with an extracellular covering that consists of an inner electron-light layer and an electron-dense outermost layer. In addition, the extracellular covering forms fin blades. Because these traits are shown to be similar to the tunic of different ascidian larvae, the extracellular covering in early appendicularian embryos is suggested to be homologous to the larval tunic of ascidian larvae. Overall, the tail of early developmental stages of appendicularians consists of a mosaic of apomorphic and plesiomorphic features. The straight, continuous endodermal strand was inherited from a common chordate ancestor whereas the finlets of larvae, consisting of extracellular material, were inherited from a common tunicate ancestor. The horizontal orientation of the tail as a whole was inherited from the last common ancestor of appendicularians and aplousobranch ascidians, and the discovered floating extension at the posterior tip of the tail is unique to the holoplanktonic Oikopleura dioica. These findings support the hypothesis that Appendicularia is derived from a sessile, ascidian-like ancestor.  相似文献   

5.
The nervous system development of the sea cucumber Stichopus japonicus was investigated to explore the development of the bilateral larval nervous system into the pentaradial adult form typical of echinoderms. The first nerve cells were detected in the apical region of epidermis in the late gastrula. In the auricularia larvae, nerve tracts were seen along the ciliary band. There was a pair of bilateral apical ganglia consisted of serotonergic nerve cells lined along the ciliary bands. During the transition to the doliolaria larvae, the nerve tracts rearranged together with the ciliary bands, but they were not segmented and remained continuous. The doliolaria larvae possessed nerves along the ciliary rings but strongly retained the features of auricularia larvae nerve pattern. The adult nervous system began to develop inside the doliolaria larvae before the larval nervous system disappears. None of the larval nervous system was observed to be incorporated into the adult nervous system with immunohistochemistry. Since S. japonicus are known to possess an ancestral mode of development for echinoderms, these results suggest that the larval nervous system and the adult nervous system were probably formed independently in the last common ancestor of echinoderms.  相似文献   

6.
With approximately 3000 marine species, Tunicata represents the most disparate subtaxon of Chordata. Molecular phylogenetic studies support Tunicata as sister taxon to Craniota, rendering it pivotal to understanding craniate evolution. Although successively more molecular data have become available to resolve internal tunicate phylogenetic relationships, phenotypic data have not been utilized consistently. Herein these shortcomings are addressed by cladistically analyzing 117 phenotypic characters for 49 tunicate species comprising all higher tunicate taxa, and five craniate and cephalochordate outgroup species. In addition, a combined analysis of the phenotypic characters with 18S rDNA-sequence data is performed in 32 OTUs. The analysis of the combined data is congruent with published molecular analyses. Successively up-weighting phenotypic characters indicates that phenotypic data contribute disproportionally more to the resulting phylogenetic hypothesis. The strict consensus tree from the analysis of the phenotypic characters as well as the single most parsimonious tree found in the analysis of the combined dataset recover monophyletic Appendicularia as sister taxon to the remaining tunicate taxa. Thus, both datasets support the hypothesis that the last common ancestor of Tunicata was free-living and that ascidian sessility is a derived trait within Tunicata. “Thaliacea” is found to be paraphyletic with Pyrosomatida as sister taxon to monophyletic Ascidiacea and the relationship between Doliolida and Salpida is unresolved in the analysis of morphological characters; however, the analysis of the combined data reconstructs Thaliacea as monophyletic nested within paraphyletic “Ascidiacea”. Therefore, both datasets differ in the interpretation of the evolution of the complex holoplanktonic life history of thaliacean taxa. According to the phenotypic data, this evolution occurred in the plankton, whereas from the combined dataset a secondary transition into the plankton from a sessile ascidian is inferred. Besides these major differences, both analyses are in accord on many phylogenetic groupings, although both phylogenetic reconstructions invoke a high degree of homoplasy. In conclusion, this study represents the first serious attempt to utilize the potential phylogenetic information present in phenotypic characters to elucidate the inter-relationships of this diverse marine taxon in a consistent cladistic framework.  相似文献   

7.
Nervous systems are important in assessing interphyletic phylogenies because they are conservative and complex. Regarding nervous system evolution within deuterostomes, two contrasting hypotheses are currently discussed. One that argues in favor of a concentrated, structured, central nervous system in the last common ancestor of deuterostomes (LCAD); the other reconstructing a decentralized nerve net as the nervous system of the LCAD. Here, we present a morphological analysis of the nervous system of the pterobranch deuterostome Cephalodiscus gracilis Harmer, 1905 based on transmission electron microscopy, confocal laser scanning microscopy, immunohistochemistry, and computer-assisted 3D reconstructions based on complete serial histological sections. The entire nervous system constitutes a basiepidermal plexus. The prominent dorsal brain at the base of the mesosomal tentacles contains an anterior concentration of serotonergic neurons and a posterior net of neurites. Predominant neurite directions differ between brain regions and synapses are present, indicating that the brain constitutes a centralized portion of the nervous system. Main structures of the peripheral nervous system are the paired branchial nerves, tentacle nerves, and the ventral stalk nerve. Serotonergic neurites are scattered throughout the epidermis and are present as concentrations along the anterior border of the branchial nerves. Serotonergic neurons line each tentacle and project into the brain. We argue that the presence of a centralized brain in C. gracilis supports the hypothesis that a nerve center was present in the LCAD. Moreover, based on positional and structural similarity, we suggest that the branchial nerves in C. gracilis could be homologous to branchial nerves in craniates, a hypothesis that should be further investigated.  相似文献   

8.
The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.  相似文献   

9.
浮游被囊动物的分类及其生态学研究进展   总被引:2,自引:0,他引:2  
被囊动物(Tunicata)是一类低等脊索动物,包括3个纲:有尾纲、海樽纲和海鞘纲;全部生活在海洋里,其中有尾纲和海樽纲营浮游生活。综述了国内外浮游被囊动物分类和生态研究的现状和进展,综述介绍了有尾纲和海樽纲的分类依据、研究现状、趋势和在海洋生态系统中的作用。浮游被囊动物是热带和亚热带海域重要的浮游动物类群,种类和数量的分布变化受物理和生物环境因素的影响;它一方面大量摄食浮游细菌和微小浮游植物,另一方面被一些经济动物摄食,因此在海洋食物链的传递和生态系统的物质循环中占有重要位置。  相似文献   

10.
Ecteinascidia turbinata is a colonial ascidian that as an adult shares characters with phlebobranch ascidians, whereas the larvae are similar to aplousobranch ascidian larvae. The sarcotubular complex consists of invaginations of the sarcolemma that contact the sarcoplasmatic reticulum via dyads or triads. If present, the invaginations of the sarcolemma in tunicates have been characterized as laminar or tubular. We comparatively investigated the sarcotubular complex of E. turbinata and seven other tunicate species using 3D-reconstruction techniques based on electron micrographs of serial sections. The mononucleate muscle cells in E. turbinata possess intermediate and close junctions and contain several layers of peripheral myofibrillae. The myofibrillae are surrounded by continuous cisternae of the sarcoplasmic reticulum that forms interconnected rings around the z-bands. The invaginations of the sarcolemma are laminar, contacting the sarcoplasamatic reticulum at the height of the z-bands via dyads and triads. We present a clear definition of character states encountered in Tunicata: laminar invaginations are characterized by a width to length ratio of smaller than 1:20, tubular invagination by a width to length ratio of larger than 1:10. Laminar invaginations are found in stolidobranch ascidians and E. turbinata. Tubular invaginations are present in aplousobranch ascidians and appendicularians. This character state distribution across taxa supports the hypothesis that E. turbinata should be included in Phlebobranchiata as suggested by adult characters and that the larval similarities with Aplousobranchiata arose by convergent evolution. An erratum to this article can be found at  相似文献   

11.
Recent interpretations of developmental gene expression patterns propose that the last common metazoan ancestor was segmented, although most animal phyla show no obvious signs of segmentation. Developmental studies of non-model system trochozoan taxa may shed light on this hypothesis by assessing possible cryptic segmentation patterns. In this paper, we present the first immunocytochemical data on the ontogeny of the nervous system and the musculature in the sipunculan Phascolion strombus. Myogenesis of the first anlagen of the body wall ring muscles occurs synchronously and not subsequently from anterior to posterior as in segmented spiralian taxa (i.e. annelids). The number of ring muscles remains constant during the initial stages of body axis elongation. In the anterior-posteriorly elongated larva, newly formed ring muscles originate along the entire body axis between existing myocytes, indicating that repeated muscle bands do not form from a posterior growth zone. During neurogenesis, the Phascolion larva expresses a non-metameric, paired, ventral nerve cord that fuses in the mid-body region in the late-stage elongated larva. Contrary to other trochozoans, Phascolion lacks any larval serotonergic structures. However, two to three FMRFamide-positive cells are found in the apical organ. In addition, late larvae show commissure-like neurones interconnecting the two ventral nerve cords, while early juveniles exhibit a third, medially placed FMRFamidergic ventral nerve. Although we did not find any indications for cryptic segmentation, certain neuro-developmental traits in Phascolion resemble the conditions found in polychaetes (including echiurans) and myzostomids and support a close relationship of Sipuncula and Annelida.  相似文献   

12.
Serotonin (5-hydroxytryptamine) is a biogenic amine distributed throughout the metazoans and has an old evolutionary history. It is involved as a developmental signal in the early morphogenesis of both invertebrates and vertebrates, whereas in adults it acts mainly as a neurotransmitter and gastrointestinal hormone. In vertebrates, serotonin regulates the morphogenesis of the central nervous system and the specification of serotonergic as well as dopaminergic neurons. The present study uses, as an experimental model, an invertebrate chordate, the lancelet Branchiostoma floridae, characterized by its remarkable homologies with vertebrates that allows the 'bauplan' of the probable ancestor of vertebrates to be outlined. In particular, the involvement of serotonin as a developmental signal in embryos and larvae, as well as a neurotransmitter and gastrointestinal hormone in adult specimens of Branchiostoma floridae, gives further support to a common origin of cephalocordates and vertebrates.  相似文献   

13.
To elucidate the evolutionary origin of nervous system centralization, we investigated the molecular architecture of the trunk nervous system in the annelid Platynereis dumerilii. Annelids belong to Bilateria, an evolutionary lineage of bilateral animals that also includes vertebrates and insects. Comparing nervous system development in annelids to that of other bilaterians could provide valuable information about the common ancestor of all Bilateria. We find that the Platynereis neuroectoderm is subdivided into longitudinal progenitor domains by partially overlapping expression regions of nk and pax genes. These domains match corresponding domains in the vertebrate neural tube and give rise to conserved neural cell types. As in vertebrates, neural patterning genes are sensitive to Bmp signaling. Our data indicate that this mediolateral architecture was present in the last common bilaterian ancestor and thus support a common origin of nervous system centralization in Bilateria.  相似文献   

14.
15.
16.

Background

Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS), a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers.

Results

In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system.

Conclusion

Our results show that: a) the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b) the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common ancestor of all the Deuterostomia.  相似文献   

17.
18.
The nervous systems of animals as diverse as flies and mice share many conserved features, suggesting that such features were already present in their last common ancestor. As our knowledge of neural development increases, so does the list of conserved features, pointing to the existence of a highly sophisticated, single species as the origin of most extant nervous systems. Possible reasons for this unexpected monophyly are discussed, leading to the conclusion that the appearance of very different life forms, lifestyles and habitats requires the previous attainment of a neural circuitry that is sufficiently robust to cope with large changes without losing its overall coherence.  相似文献   

19.
Nervous system development in echinoderms has been well documented, especially for sea urchins and starfish. However, that of crinoids, the most basal group of extant echinoderms, has been poorly studied due to difficulties in obtaining their larvae. In this paper, we report nervous system development from two species of crinoids, from hatching to late doliolaria larvae in the sea lily Metacrinus rotundus and from hatching to cystidean stages after settlement in the feather star Oxycomanthus japonicus. The two species showed a similar larval nervous system pattern with an extensive anterior larval ganglion. The ganglion was similar to that in sea urchins which is generally regarded as derived. In contrast with other echinoderm and hemichordate larvae, synaptotagmin antibody 1E11 failed to reveal ciliary band nerve tracts. Basiepithelial nerve cells formed a net-like structure in the M. rotundus doliolaria larvae. In O. japonicus, the larval ganglion was still present 1 day after settlement when the adult nervous system began to appear inside the crown. Stalk nerves originated from the crown and extended down the stalk, but had no connections with the remaining larval ganglion at the base of the stalk. The larval nervous system was not incorporated into the adult nervous system, and the larval ganglion later disappeared. The aboral nerve center, the dominant nervous system in adult crinoids, was formed at the early cystidean stage, considerably earlier than previously suggested. Through comparisons with nervous system development in other ambulacraria, we suggest the possible nervous system development pattern of the echinoderm ancestor and provide new implications on the evolutionary history of echinoderm life cycles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号