首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The actin filament-associated protein AFAP-110 is an SH2/SH3 binding partner for Src. AFAP-110 contains several protein-binding motifs in its amino terminus and has been hypothesized to function as an adaptor molecule that could link signaling proteins to actin filaments. Recent studies using deletional mutagenesis demonstrated that AFAP-110 can alter actin filament integrity in SV40 transformed Cos-1 cells. Thus, AFAP-110 may be positioned to modulate the effects of Src upon actin filaments. In this report, we sought to determine whether (a) AFAP-110 could interact with actin filaments directly and (b) deletion mutants could affect actin filament integrity and cell shape in untransformed fibroblast cells. The data demonstrate that the carboxy terminus of AFAP-110 is both necessary and sufficient for actin filament association, in vivo and in vitro. Analysis of the carboxy terminus revealed a mean 40% similarity with other known actin-binding motifs, indicating a mechanism for binding to actin filaments. AFAP-110 can also induce lamellipodia formation. Contiguous with the alpha-helical, actin-binding motif is an alpha-helical, leucine zipper motif. Deletion of the leucine zipper motif (AFAP(Deltalzip)) followed by cellular expression enabled AFAP(Deltalzip) to alter actin filament integrity and cell shape in untransformed cells as evidenced by the induction of lamellipodia formation. We hypothesize that AFAP-110 may be an important signaling protein that can directly modulate changes in actin filament integrity and induce lamellipodia formation.  相似文献   

2.
Activation of PKC will induce the cSrc binding partner AFAP-110 to colocalize with and activate cSrc. The ability of AFAP-110 to colocalize with cSrc is contingent on the integrity of the amino-terminal pleckstrin homology (PH1) domain, while the ability to activate cSrc is dependent on the integrity of its SH3 binding motif, which engages the cSrc SH3 domain. The outcome of AFAP-110-directed cSrc activation is a change in actin filament integrity and the formation of podosomes. Here, we address what cellular signals promote AFAP-110 to colocalize with and activate cSrc, in response to PKC activation or PMA treatment. Because PH domain integrity in AFAP-110 is required for colocalization, and PH domains are known to interact with both protein and lipid binding partners, we sought to determine whether phosphatidylinositol 3-kinase (PI3K) activation played a role in PMA-induced colocalization between AFAP-110 and cSrc. We show that PMA treatment is able to direct activation of PI3K. Treatment of mouse embryo fibroblast with PI3K inhibitors blocked PMA-directed colocalization between AFAP-110 and cSrc and subsequent cSrc activation. PMA also was unable to induce colocalization or cSrc activation in cells that lacked the p85 and - regulatory subunits of PI3K. This signaling pathway was required for migration in a wound healing assay. Cells that were null for cSrc or the p85 regulatory subunits or expressed a dominant-negative AFAP-110 also displayed a reduction in migration. Thus PI3K activity is required for PMA-induced colocalization between AFAP-110 and cSrc and subsequent cSrc activation, and this signaling pathway promotes cell migration. phorbol 12-myristate 13-acetate; Src; protein kinase C; AFAP-110; phosphatidylinositol 3-kinase; pleckstrin homology domain  相似文献   

3.
AFAP-110 has an intrinsic ability to alter actin filament integrity as an actin filament crosslinking protein. This capability is regulated by a carboxy terminal leucine zipper (Lzip) motif. The Lzip motif facilitates self-association stabilizing the AFAP-110 multimers. Deletion of the Lzip motif (AFAP-110(Deltalzip)) reduces the stability of the AFAP-110 multimer and concomitantly increases its ability to crosslink actin filaments, in vitro, and to activate cSrc and alter actin filament integrity, in vivo. We sought to determine how the Lzip motif regulates AFAP-110 function. Substitution of the c-Fos Lzip motif in place of the AFAP-110 Lzip motif (AFAP-110(fos)) was predicted to preserve the alpha-helical structure while changing the sequence. To alter the structure of the alpha-helix, a leucine to proline mutation was generated in the AFAP-110 alpha-helical Lzip motif (AFAP-110(581P)), which largely preserved the sequence. The helix mutants, AFAP-110(Deltalzip), AFAP-110(fos), and AFAP-110(581P), demonstrated reduced multimer stability with an increased capacity to crosslink actin filaments, in vitro, relative to AFAP-110. An analysis of opposing binding sites indicated that the carboxy terminus/Lzip motif can contact sequences within the amino terminal pleckstrin homology (PH1) domain indicating an auto-inhibitory mechanism for regulating multimer stability and actin filament crosslinking. In vivo, only AFAP-110(Deltalzip) and AFAP-110(581P) were to activate cSrc and to alter cellular actin filament integrity. These data indicate that the intrinsic ability of AFAP-110 to crosslink actin filaments is dependent upon both the sequence and structure of the Lzip motif, while the ability of the Lzip motif to regulate AFAP-110-directed activation of cSrc and changes in actin filament integrity in vivo is dependent upon the structure or presence of the Lzip motif. We hypothesize that the intrinsic ability of AFAP-110 to crosslink actin filaments or activate cSrc are distinct functions.  相似文献   

4.
The actin-filament associated protein (AFAP) family of adaptor proteins consists of three members: AFAP1, AFAP1L1, and AFAP1L2/XB130 with AFAP1 being the best described as a cSrc binding partner and actin cross-linking protein. A homology search of AFAP1 recently identified AFAP1L1 which has a similar sequence, domain structure and cellular localization; however, based upon sequence variations, AFAP1L1 is hypothesized to have unique functions that are distinct from AFAP1. While AFAP1 has the ability to bind to the SH3 domain of the nonreceptor tyrosine kinase cSrc via an N-terminal SH3 binding motif, it was unable to bind cortactin. However, the SH3 binding motif of AFAP1L1 was more efficient at interacting with the SH3 domain of cortactin and not cSrc. AFAP1L1 was shown by fluorescence microscopy to decorate actin filaments and move to punctate actin structures and colocalize with cortactin, consistent with localization to invadosomes. Upon overexpression in A7r5 cells, AFAP1L1 had the ability to induce podosome formation and move to podosomes without stimulation. Immunohistochemical analysis of AFAP1L1 in human tissues shows differential expression when contrasted with AFAP1 with localization of AFAP1L1 to unique sites in muscle and the dentate nucleus of the brain where AFAP1 was not detectable. We hypothesize AFAP1L1 may play a similar role to AFAP1 in affecting changes in actin filaments and bridging interactions with binding partners, but we hypothesize that AFAP1L1 may forge unique protein interactions in which AFAP1 is less efficient, and these interactions may allow AFAP1L1 to affect invadosome formation.  相似文献   

5.
Transformation of chicken embryo cells by oncogenic forms of pp60src (e.g., pp60v-src or pp60527F) is linked with a concomitant increase in the steady-state levels of tyrosine-phosphorylated cellular proteins. Activated forms of the Src protein-tyrosine kinase stably associate with tyrosine-phosphorylated proteins, including a protein of 110 kDa, pp110. Previous reports have established that stable complex formation between pp110 and pp60src requires the structural integrity of the Src SH2 and SH3 domains, whereas tyrosine phosphorylation of pp110 requires only the structural integrity of the SH3 domain. In normal chicken embryo cells, pp110 colocalizes with actin stress filaments, and in Src-transformed cells, pp110 is found associated with podosomes (rosettes). Here, we report the identification and characterization of cDNAs encoding pp110. The predicted open reading frame encodes a polypeptide of 635 amino acids which exhibits little sequence similarity with other protein sequences present in the available sequence data bases. Thus, pp110 is a distinctive cytoskeleton-associated protein. On the basis of its association with actin stress filaments, we propose the term AFAP-110, for actin filament-associated protein of 110 kDa. In vitro analysis of AFAP-110 binding to bacterium-encoded glutathione S-transferase (GST) fusion proteins revealed that AFAP-110 present in normal cell extracts binds efficiently to Src SH3/SH2-containing fusion proteins, less efficiently to Src SH3-containing proteins, and poorly to SH2-containing fusion proteins. In contrast, AFAP-110 in Src-transformed cell extracts bound to GST-SH3/SH2 and GST-SH2 fusion proteins. Analysis of AFAP-110 cDNA sequences revealed the presence of sequence motifs predicted to bind to SH2 and SH3 domains, respectively. We suggest that AFAP-110 may represent a cellular protein capable of interacting with SH3-containing proteins and, upon tyrosine phosphorylation, binds tightly to SH2-containing proteins, such as pp60src or pp59fyn. The potential roles of AFAP-110 as an SH3/SH2 cytoskeletal binding protein are discussed.  相似文献   

6.
The actin filament-associated protein AFAP-110 forms a stable complex with activated variants of Src in chick embryo fibroblast cells. Stable complex formation requires the integrity of the Src SH2 and SH3 domains. In addition, AFAP-110 encodes two adjacent SH3 binding motifs and six candidate SH2 binding motifs. These data indicate that both SH2 and SH3 domains may work cooperatively to facilitate Src/AFAP-110 stable complex formation. As a test for this hypothesis, we sought to understand whether one or both SH3 binding motifs in AFAP-110 modulate interactions with the Src SH3 domain and if this interaction was required to present AFAP-110 for tyrosine phosphorylation by, and stable complex formation with, Src. A proline to alanine site-directed mutation in the amino terminal SH3 binding motif (SH3bm I) was sufficient to abrogate absorption of AFAP-110 with GST-SH3src. Co-expression of activated Src (pp60527F) with AFAP-110 in Cos-1 cells permit tyrosine phosphorylation of AFAP-110 a nd stable complex formation with pp60527F. However, co-expression of the SH3 null-binding mutant (AFAP71A) with pp60527F revealed a 2.7 fold decrease in steady-state levels of tyrosine phosphorylation, compared to AFAP-110. Although a lower but detectable level of AFAP71A was phosphorylated on tyrosine, AFAP71A could not be detected in stable complex with pp60527F, unlike AFAP-110. These data indicate that SH3 interactions facilitate presentation of AFAP-110 for tyrosine phosphorylation and are also required for stable complex formation with pp60527F. (Mol Cell Biochem 175: 243–252, 1997)  相似文献   

7.
8.
We report that the actin filament-associated protein AFAP-110 is required to mediate protein kinase Calpha (PKCalpha) activation of the nonreceptor tyrosine kinase c-Src and the subsequent formation of podosomes. Immunofluorescence analysis demonstrated that activation of PKCalpha by phorbol 12-myristate 13-acetate (PMA), or ectopic expression of constitutively activated PKCalpha, directs AFAP-110 to colocalize with and bind to the c-Src SH3 domain, resulting in activation of the tyrosine kinase. Activation of c-Src then directs the formation of podosomes, which contain cortactin, AFAP-110, actin, and c-Src. In a cell line (CaOV3) that has very little or no detectable AFAP-110, PMA treatment was unable to activate c-Src or effect podosome formation. Ectopic expression of AFAP-110 in CaOV3 cells rescued PKCalpha-mediated activation of c-Src and elevated tyrosine phosphorylation levels and subsequent formation of podosomes. Neither expression of activated PKCalpha nor treatment with PMA was able to induce these changes in CAOV3 cells expressing mutant forms of AFAP-110 that are unable to bind to, or colocalize with, c-Src. We hypothesize that one major function of AFAP-110 is to relay signals from PKCalpha that direct the activation of c-Src and the formation of podosomes.  相似文献   

9.
The actin filament-associated protein and Src-binding partner, AFAP-110, is an adaptor protein that links signaling molecules to actin filaments. AFAP-110 binds actin filaments directly and multimerizes through a leucine zipper motif. Cellular signals downstream of Src(527F) can regulate multimerization. Here, we determined recombinant AFAP-110 (rAFAP-110)-bound actin filaments cooperatively, through a lateral association. We demonstrate rAFAP-110 has the capability to cross-link actin filaments, and this ability is dependent on the integrity of the carboxy terminal actin binding domain. Deletion of the leucine zipper motif or PKC phosphorylation affected AFAP-110's conformation, which correlated with changes in multimerization and increased the capability of rAFAP-110 to cross-link actin filaments. AFAP-110 is both a substrate and binding partner of PKC. On PKC activation, stress filament organization is lost, motility structures form, and AFAP-110 colocalizes strongly with motility structures. Expression of a deletion mutant of AFAP-110 that is unable to bind PKC blocked the effect of PMA on actin filaments. We hypothesize that upon PKC activation, AFAP-110 can be cooperatively recruited to newly forming actin filaments, like those that exist in cell motility structures, and that PKC phosphorylation effects a conformational change that may enable AFAP-110 to promote actin filament cross-linking at the cell membrane.  相似文献   

10.
Enhanced expression and activity of cSrc are associated with ovarian cancer progression. Generally, cSrc does not contain activating mutations; rather, its activity is increased in response to signals that affect a conformational change that releases its autoinhibition. In this report, we analyzed ovarian cancer tissues for the expression of a cSrc-activating protein, AFAP-110. AFAP-110 activates cSrc through a direct interaction that releases it from its autoinhibited conformation. Immunohistochemical analysis revealed a concomitant increase of AFAP-110 and cSrc in ovarian cancer tissues. An analysis of the AFAP-110 coding sequence revealed the presence of a nonsynonymous, single-nucleotide polymorphism that resulted in a change of Ser403 to Cys403. In cells that express enhanced levels of cSrc, AFAP-110403C directed the activation of cSrc and the formation of podosomes independently of input signals, in contrast to wild-type AFAP-110. We therefore propose that, under conditions of cSrc overexpression, the polymorphic variant of AFAP-110 promotes cSrc activation. Further, these data indicate amechanismby which an inherited genetic variation could influence ovarian cancer progression and could be used to predict the response to targeted therapy.  相似文献   

11.
During development, dynamic changes in the actin cytoskeleton determine both cell motility and morphological differentiation. In most mature tissues, cells are generally minimally motile and have morphologies specialized to their functions. In metastatic cancer, cells generally lose their specialized morphology and become motile. Therefore, proteins that regulate the transition between the motile and morphologically differentiated states can play important roles in determining cancer outcomes. AFAP120 is a neuronal-specific protein that binds Src kinase and protein kinase C (PKC) and cross-links actin filaments. Here we report that expression and tyrosine phosphorylation of AFAP120 are developmentally regulated in the cerebellum. In cerebellar cultures, PKC activation induces Src kinase-dependent phosphorylation of AFAP120, indicating that AFAP120 may be a downstream effector of Src. In neuroblastoma cells induced to differentiate by treatment with a PKC activator, tyrosine phosphorylation of AFAP120 appears to regulate the formation of the lamellar actin structures and subsequent neurite initiation. Together, these results indicate that AFAP120 plays a role in organizing dynamic actin structures during neuronal differentiation and suggest that AFAP120 may help regulate the transition from motile precursor to morphologically differentiated neurons.  相似文献   

12.
Podosome formation in vascular smooth muscle cells is characterized by the recruitment of AFAP-110, p190RhoGAP, and cortactin, which have specific roles in Src activation, local down-regulation of RhoA activity, and actin polymerization, respectively. However, the molecular mechanism that underlies their specific recruitment to podosomes remains unknown. The scaffold protein Tks5 is localized to podosomes in Src-transformed fibroblasts and in smooth muscle cells, and may serve as a specific recruiting adapter for various components during podosome formation. We show here that induced mislocalization of Tks5 to the surface of mitochondria leads to a major subcellular redistribution of AFAP-110, p190RhoGAP, and cortactin, and to inhibition of podosome formation. Analysis of a series of similarly mistargeted deletion mutants of Tks5 indicates that the fifth SH3 domain is essential for this recruitment. A Tks5 mutant lacking the PX domain also inhibits podosome formation and induces the redistribution of AFAP-110, p190RhoGAP, and cortactin to the perinuclear area. By expressing a catalytically inactive point mutant and by siRNA-mediated expression knock-down we also provide evidence that p190RhoGAP is required for podosome formation. Together our findings demonstrate that Tks5 plays a central role in the recruitment of AFAP-110, p190RhoGAP, and cortactin to drive podosome formation.  相似文献   

13.
14.
Erythrocyte tropomodulin (E-Tmod, Tmod1) is a tropomyosin-binding protein that caps the slow-growing end of actin filaments. In erythrocytes, it may favor the formation of short actin protofilaments needed for elastic cell deformation. Previously we created a knockout mouse model in which lacZ was knocked-in downstream of the E1 promoter to report the expression of full length E-Tmod. Here we utilize E-Tmod(+/lacZ) mice to study E-Tmod expression patterns in the CNS. X-gal staining and in situ hybridization of adults revealed its restricted expression in the olfactory bulb, hippocampus, cerebral cortex, basal ganglia, nuclei of brain stem and cerebellum. In neonates, signals in the cortex and caudate putamen increased from days 15 to 40. Immunohistochemistry also revealed that signals for beta-galactosidase coincided with that of NeuN, a post-mitotic nuclear marker for neurons, but not that for GFAP+ astrocytes or APC+ oligodendrocytes, suggesting E-Tmod/lacZ-positive cells in the CNS were neurons. Large neurons, e.g., mitral cells in olfactory bulb and mossy cells in hilus of the dentate gyrus are among those that expressed very high levels of E-Tmod in the CNS.  相似文献   

15.
Mechanical stretch-induced activation of c-Src is an important step for signal transduction of stretch-induced fetal rat lung cell proliferation. This process appears to be mediated through actin filament-associated protein (AFAP), encoded by a gene originally cloned from the chicken. In the present study, we cloned the rat AFAP gene from fetal rat lungs. Its mRNA and protein are differentially expressed among various tissues. The protein is colocalized with actin filaments in fetal rat lung epithelial cells and fibroblasts. Mechanical stretch increased tyrosine phosphorylation of rat AFAP and its binding to c-Src within the initial several minutes. Src SH2 and SH3 binding motifs are highly conserved in the AFAP proteins (from chicken, rat to human). On the basis of the molecular structure of AFAP protein, we speculate that it is an adaptor in mechanical stretch-induced activation of c-Src. A novel model of mechanoreception is proposed.  相似文献   

16.
Mao P  Tao YX  Fukaya M  Tao F  Li D  Watanabe M  Johns RA 《IUBMB life》2008,60(10):684-692
Membrane-associated guanylate kinases (MAGUKs) act as scaffolds to coordinate signaling events through their multiple domains at the plasma membrane. The MAGUK SH3 domain is noncanonical and its function remains unclear. To identify potential binding partners of MAGUK SH3, the synapse-associated protein 102 (SAP102) SH3 domain was used as bait in a yeast two-hybrid screen of a mouse embryonic cDNA library. A mouse homologue of the Drosophila discs large tumor suppressor (Dlg, also known as SAP97) bound preferentially to SAP102 SH3. The 4347bp cDNA sequence encoded an 893 amino acid protein with 94% identity to mouse SAP97. A deleted region (33-aa) strongly suggests this is a novel splice variant, which we call Embryonic-dlg/SAP97 (E-dlg). The interaction of SAP102 and E-dlg was confirmed in mammalian cells. E-dlg can also bind to potassium channel Kv1.4 in a pull-down assay. E-dlg was highly expressed in embryonic and some adult mouse tissues, such as brain, kidney, and ovary. Furthermore, in situ hybridization showed that E-dlg was mostly expressed in olfactory bulb and cerebellum.  相似文献   

17.
The levels of the two isoforms of glutamate decarboxylase (GAD) were measured in 12 regions of adult rat brain and three regions of mouse brain by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting with an antiserum that recognizes the identical C-terminal sequence in both isoforms from both species. In rat brain the amount of smaller isoform, GAD65, was greater than that of the larger isoform, GAD67, in all twelve regions. GAD65 ranged from 77-89% of total GAD in frontal cortex, hippocampus, hypothalamus, midbrain, olfactory bulb, periaqueductal gray matter, substantia nigra, striatum, thalamus and the ventral tegmental area. The proportion of GAD65 was lower in amygdala and cerebellum but still greater than half of the total. There was a strong correlation between total GAD protein and GAD activity. In the three mouse brain regions analysed (cerebellum, cerebral cortex and hippocampus) the proportion of GAD65 (35,47, and 51% of total GAD) was significantly lower than in the corresponding rat-brain regions. The amount of GAD67 was greater than the amount of GAD65 in mouse cerebellum and was approximately equal to the amount of GAD65 in mouse cerebral cortex and hippocampus.  相似文献   

18.
19.
Yadav SS  Miller WT 《Biochemistry》2008,47(41):10871-10880
The SH3-SH2-kinase domain arrangement in nonreceptor tyrosine kinases has been conserved throughout evolution. For Src family kinases, the relative positions of the domains are important for enzyme regulation; they permit the assembly of Src kinases into autoinhibited conformations. The SH3 and SH2 domains of Src family kinases have an additional role in determining the substrate specificity of the kinase. We addressed the question of whether the domain arrangement of Src family kinases has a role in substrate specificity by producing mutants with alternative arrangements. Our results suggest that changes in the positions of domains can lead to specific changes in the phosphorylation of Sam68 and Cas by Src. Phosphorylation of Cas by several mutants triggers downstream signaling leading to cell migration. The placement of the SH2 domain with respect to the catalytic domain of Src appears to be especially important for proper substrate recognition, while the placement of the SH3 domain is more flexible. The results suggest that the involvement of the SH3 and SH2 domains in substrate recognition is one reason for the strict conservation of the SH3-SH2-kinase architecture.  相似文献   

20.
Distribution of PINK1 and LRRK2 in rat and mouse brain   总被引:1,自引:0,他引:1  
Mutations in two kinases, PTEN induced kinase 1 (PINK1) and leucine-rich repeat kinase 2 (LRRK2), have been shown to segregate with familial forms of Parkinson's disease. Although these two genes are expected to be involved in molecular mechanisms relevant to Parkinson's disease, their precise anatomical localization in mammalian brain is unknown. We have mapped the expression of PINK1 and LRRK2 mRNA in the rat and mouse brain via in situ hybridization histochemistry using riboprobes. We found that both genes are broadly expressed throughout the brain with similar neuroanatomical distribution in mouse compared to rat. PINK1 mRNA abundance was rather uniform throughout the different brain regions with expression in cortex, striatum, thalamus, brainstem and cerebellum. LRRK2, on the other hand, showed strong regional differences in expression levels with highest levels seen in the striatum, cortex and hippocampus. Weak LRRK2 expression was seen in the hypothalamus, olfactory bulb and substantia nigra. We confirmed these distributions for both genes using quantitative RT-PCR and for LRRK2 by western immunoblot. As their broad expression patterns contrast with localized neuropathology in Parkinson's disease, the pathogenicity of clinical mutant forms of PINK1 and LRRK2 may be mediated by nigrostriatal-specific mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号