首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression of the hepatitis B virus core gene in vitro and in vivo.   总被引:7,自引:14,他引:7       下载免费PDF全文
T Weimer  J Salfeld    H Will 《Journal of virology》1987,61(10):3109-3113
  相似文献   

2.
The 3.2-kb hepatitis B virus (HBV) genome encodes a single regulatory protein termed HBx. While multiple functions have been identified for HBx in cell culture, its role in virus replication remains undefined. In the present study, we combined an HBV plasmid-based replication assay with the hydrodynamic tail vein injection model to investigate the function(s) of HBx in vivo. Using a greater-than-unit-length HBV plasmid DNA construct (payw1.2) and a similar construct with a stop codon at position 7 of the HBx open reading frame (payw1.2*7), we showed that HBV replication in transfected HepG2 cells was reduced 65% in the absence of HBx. These plasmids were next introduced into the livers of outbred ICR mice via hydrodynamic tail vein injection. At the peak of virus replication, at 4 days postinjection, intrahepatic markers of HBV replication were reduced 72% to 83% in mice injected with HBx-deficient payw1.2*7 compared to those measured in mice receiving wild-type payw1.2. A second plasmid encoding HBx was able to restore virus replication from payw1.2*7 to wild-type levels. Finally, viremia was monitored over the course of acute virus replication, and at 4 days postinjection, it was reduced by nearly 2 logs in the absence of HBx. These studies establish that the role for HBx in virus replication previously shown in transfected HepG2 cells is also apparent in the mouse liver within the context of acute hepatitis. Importantly, the function of HBx can now be studied in an in vivo setting that more closely approximates the cellular environment for HBV replication.  相似文献   

3.
Toll-like receptor signaling inhibits hepatitis B virus replication in vivo   总被引:26,自引:0,他引:26  
Toll-like receptors (TLR) play a key role in innate immunity. To examine the ability of diverse TLRs to modulate hepatitis B virus (HBV) replication, HBV transgenic mice received a single intravenous injection of ligands specific for TLR2, TLR3, TLR4, TLR5, TLR7, and TLR9. All of the ligands except for TLR2 inhibited HBV replication in the liver noncytopathically within 24 h in a alpha/beta interferon-dependent manner. The ability of these TLR ligands to induce antiviral cytokines at the site of HBV replication suggests that TLR activation could represent a powerful and novel therapeutic strategy for the treatment of chronic HBV infection.  相似文献   

4.
We have investigated the role of liver-specific trans-acting factor(s) in the regulation of hepatitis B virus (HBV) gene expression. A recorder plasmid (pEcoAluCAT; HBV nucleotides 1 through 1878) was constructed containing the HBV enhancer and the promoter region of the pregenomic RNA, which was ligated to the bacterial chloramphenicol acetyltransferase (CAT) gene. Upon transfecting this plasmid into various cell lines, the CAT gene was expressed only in cells of liver origin. Moreover, competition cotransfections with pEcoAluCAT and plasmids containing HBV enhancer sequences in human hepatoblastoma-derived HepG2 cells indicated the presence of titratable trans-acting factor(s) in these cells. Gel mobility shift assays using HBV enhancer and core promoter domains confirmed the existence of sequence-specific DNA-binding proteins in liver cell nuclear extract which bound to these regions. These binding sites encompass 17- and 12-nucleotide palindromes in the HBV enhancer and core promoter domains, respectively, when mapped by the methylation interference assay.  相似文献   

5.
6.
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.  相似文献   

7.
8.
9.
10.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and 1-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed in E. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCl density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBeAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B14d  相似文献   

11.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and l-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed inE. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCI density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBcAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B144C191. Using those fusion proteins, ELISA for screening of antibodies against both HBV and HCV in human sera was also established.  相似文献   

12.
Lewellyn EB  Loeb DD 《PloS one》2011,6(2):e17202
The core protein of hepatitis B virus can be phosphorylated at serines 155, 162, and 170. The contribution of these serine residues to DNA synthesis was investigated. Core protein mutants were generated in which each serine was replaced with either alanine or aspartate. Aspartates can mimic constitutively phosphorylated serines while alanines can mimic constitutively dephosphorylated serines. The ability of these mutants to carry out each step of DNA synthesis was determined. Alanine substitutions decreased the efficiency of minus-strand DNA elongation, primer translocation, circularization, and plus-strand DNA elongation. Aspartate substitutions also reduced the efficiency of these steps, but the magnitude of the reduction was less. Our findings suggest that phosphorylated serines are required for multiple steps during DNA synthesis. It has been proposed that generation of mature DNA requires serine dephosphorylation. Our results suggest that completion of rcDNA synthesis requires phosphorylated serines.  相似文献   

13.
14.
15.
Functional organization of the hepatitis B virus enhancer.   总被引:15,自引:4,他引:11       下载免费PDF全文
We have studied the functional constituents of the hepatitis B virus enhancer in a number of cell lines. The sequence of this enhancer, being embedded within an open reading frame of the virus, is in part evolutionarily frozen and therefore serves as a good model to investigate the fundamental enhancer elements. The hepatitis B virus enhancer contains three functionally important DNA sequence elements, EP, E, and NF-1a, each of which is bound by a distinct protein(s). The synergistic action of these elements accounts for all of the enhancer activity in a nonliver cell line and for most, but not all, of the activity in liver-derived cell lines. Multimers of the E but not of the EP element act as an autonomous enhancer. Conversely, a single element of either the E or the NF-1a element can act only when linked to the EP element. These results suggest that EP is a crucial enhancer element that acts only in interaction with a second enhancer element with intrinsic enhancer activity. Interestingly, a highly similar enhancer structure is found in a number of distinct viruses.  相似文献   

16.
17.
Hepatitis C virus NS3-4A is a membrane-bound enzyme complex that exhibits serine protease, RNA helicase, and RNA-stimulated ATPase activities. This enzyme complex is essential for viral genome replication and has been recently implicated in virus particle assembly. To help clarify the role of NS4A in these processes, we conducted alanine scanning mutagenesis on the C-terminal acidic domain of NS4A in the context of a chimeric genotype 2a reporter virus. Of 13 mutants tested, two (Y45A and F48A) had severe defects in replication, while seven (K41A, L44A, D49A, E50A, M51A, E52A, and E53A) efficiently replicated but had severe defects in virus particle assembly. Multiple strategies were used to identify second-site mutations that suppressed these NS4A defects. The replication defect of NS4A F48A was partially suppressed by mutation of NS4B I7F, indicating that a genetic interaction between NS4A and NS4B contributes to RNA replication. Furthermore, the virus assembly defect of NS4A K41A was suppressed by NS3 Q221L, a mutation previously implicated in overcoming other virus assembly defects. We therefore examined the known enzymatic activities of wild-type or mutant forms of NS3-4A but did not detect specific defects in the mutants. Taken together, our data reveal interactions between NS4A and NS4B that control genome replication and between NS3 and NS4A that control virus assembly.  相似文献   

18.
The C open reading frame of the hepatitis B virus contains two in-frame ATG codons that are separated by the precore region and encodes two major polypeptides that are antigenically distinct and that are probably synthesized from individual mRNAs. The precore region directs the secretion of the e antigen, whereas the core antigen can be expressed in the absence of these sequences. In this report a transient expression system was used to study the hepatitis B virus core antigen. By using a chimeric complex of adenovirus major late promoter-simian virus 40 enhancer sequences, we were able to achieve high levels of core antigen expression in transfected cells, permitting characterization of this protein and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The core polypeptide is a 20.9-kilodalton protein, and we show in this study that it is phosphorylated in vivo. Cell fractionation studies, the results of which are supported by indirect immunofluorescence, localized the phosphocore in the cytosol and the nucleus and indicated that it is associated with the membrane of transfected cells. Results of Triton X-114 solubilization studies indicated that the phosphocore is peripherally associated with cytoplasmic membranes. Expression of the membrane-associated phosphocore occurred in the absence of the precore sequences. The phosphocore also assembled into particles in the absence of other viral gene products or intact DNA.  相似文献   

19.
20.
The carboxy-terminal domain (CTD) of the core protein of hepatitis B virus is not necessary for capsid assembly. However, the CTD does contribute to encapsidation of pregenomic RNA (pgRNA). The contribution of the CTD to DNA synthesis is less clear. This is the case because some mutations within the CTD increase the proportion of spliced RNA to pgRNA that are encapsidated and reverse transcribed. The CTD contains four clusters of consecutive arginine residues. The contributions of the individual arginine clusters to genome replication are unknown. We analyzed core protein variants in which the individual arginine clusters were substituted with either alanine or lysine residues. We developed assays to analyze these variants at specific steps throughout genome replication. We used a replication template that was not spliced in order to study the replication of only pgRNA. We found that alanine substitutions caused defects at both early and late steps in genome replication. Lysine substitutions also caused defects, but primarily during later steps. These findings demonstrate that the CTD contributes to DNA synthesis pleiotropically and that preserving the charge within the CTD is not sufficient to preserve function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号