首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
A hepatitis B virus (HBV) genome was cloned from human liver. Numerous mutations in all viral genes define this HBV DNA as a mutant, divergent from all known HBV DNA sequences. Functional analyses of this mutant demonstrated a defect blocking viral DNA synthesis. The genetic basis of this defect was identified as a single missense mutation in the 5' region of the viral polymerase gene, resulting in the inability to package pregenomic RNA into core particles. The replication defect could be trans-complemented by a full-length wild-type, but not by a full-length mutant or 3'-truncated wild-type, polymerase gene construct. Our findings indicate a critical role of the 5' polymerase gene region in the life cycle of the virus and suggest that introducing missense mutations in this region can be a strategy to terminate viral replication in vivo.  相似文献   

6.
7.
The core promoter mutants of hepatitis B virus (HBV) emerge as the dominant viral population at the late HBeAg and the anti-HBe stages of HBV infection, with the A1762T/G1764A substitutions as the hotspot mutations. The double core promoter mutations were found by many investigators to moderately enhance viral genome replication and reduce hepatitis B e antigen (HBeAg) expression. A much higher replication capacity was reported for a naturally occurring core promoter mutant implicated in the outbreak of fulminant hepatitis, which was caused by the neighboring C1766T/T1768A mutations instead. To systemically study the biological properties of naturally occurring core promoter mutants, we amplified full-length HBV genomes by PCR from sera of HBeAg(+) individuals infected with genotype A. All 12 HBV genomes derived from highly viremic sera (5 x 10(9) to 5.7 x 10(9) copies of viral genome/ml) harbored wild-type core promoter sequence, whereas 37 of 43 clones from low-viremia samples (0.2 x 10(7) to 4.6 x 10(7) copies/ml) were core promoter mutants. Of the 11 wild-type genomes and 14 core promoter mutants analyzed by transfection experiments in human hepatoma cell lines, 6 core promoter mutants but none of the wild-type genomes replicated at high levels. All had 1762/1764 mutations and an additional substitution at position 1753 (T to C), at position 1766 (C to T), or both. Moreover, these HBV clones varied greatly in their ability to secrete enveloped viral particles irrespective of the presence of core promoter mutations. High-replication clones with 1762/1764/1766 or 1753/1762/1764/1766 mutations expressed very low levels of HBeAg, whereas high-replication clones with 1753/1762/1764 triple mutations expressed high levels of HBeAg. Experiments with site-directed mutants revealed that both 1762/1764/1766 and 1753/1762/1764/1766 mutations conferred significantly higher viral replication and lower HBeAg expression than 1762/1764 mutations alone, whereas the 1753/1762/1764 triple mutant displayed only mild reduction in HBeAg expression similar to the 1762/1764 mutant. Thus, core promoter mutations other than those at positions 1762 and 1764 can have major impact on viral DNA replication and HBeAg expression.  相似文献   

8.
9.
Hydrodynamic injection (HI) with a replication competent hepatitis B virus (HBV) genome may lead to transient or prolonged HBV replication in mice. However, the prolonged HBV persistence after HI depends on the specific backbone of the vector carrying HBV genome and the genetic background of the mouse strain. We asked whether a genetically closely related hepadnavirus, woodchuck hepatitis virus (WHV), may maintain the gene expression and replication in the mouse liver after HI. Interestingly, we found that HI of pBS-WHV1.3 containing a 1.3 fold overlength WHV genome in BALB/c mouse led to the long presence of WHV DNA and WHV proteins expression in the mouse liver. Thus, we asked whether WHV genome carrying foreign DNA sequences could maintain the long term gene expression and persistence. For this purpose, the coding region of HBV surface antigen (HBsAg) was inserted into the WHV genome to replace the corresponding region. Three recombinant WHV-HBV genomes were constructed with the replacement with HBsAg a-determinant, major HBsAg, and middle HBsAg. Serum HBsAg, viral DNA, hepatic WHV protein expression, and viral replication intermediates were detected in mice after HI with recombinant genomes. Similarly, the recombinant genomes could persist for a prolonged period of time up to 45 weeks in mice. WHV and recombinant WHV-HBV genomes did not trigger effective antibody and T-cell responses to viral proteins. The ability of recombinant WHV constructs to persist in mice is an interesting aspect for the future investigation and may be explored for in vivo gene transfer.  相似文献   

10.
11.
12.
13.
14.
15.
Hepatitis B virus surface antigen (HBsAg) vaccination has been shown to be effective in preventing hepatitis B virus (HBV) infection. The protection is based on the induction of anti-HBs antibodies against a major cluster of antigenic epitopes of HBsAg, defined as the 'a' determinant region of small HBsAg. Prophylaxis of recurrent HBV infection in patients who have undergone liver transplantation for hepatitis B-related end-stage liver disease is achieved by the administration of hepatitis B immune globulins (HBIg) derived from HBsAg-vaccinated subjects. The anti-HBs-mediated immune pressure on HBV, however, seems to go along with the emergence and/or selection of immune escape HBV mutants that enable viral persistence in spite of adequate antibody titers. These HBsAg escape mutants harbor single or double point mutations that may significantly alter the immunological characteristics of HBsAg. Most escape mutations that influence HBsAg recognition by anti-HBs antibodies are located in the second 'a' determinant loop. Notably, HBsAg with an arginine replacement for glycine at amino acid 145 is considered the quintessential immune escape mutant because it has been isolated consistently in clinical samples of HBIg-treated individuals and vaccinated infants of chronically infected mothers. Direct binding studies with monoclonal antibodies demonstrated a more dramatic impact of this mutation on anti-HBs antibody recognition, compared with other point mutations in this antigenic domain. The clinical and epidemiological significance of these emerging HBsAg mutants will be a matter of research for years to come, especially as data available so far document that these mutants are viable and infectious strains. Strategies for vaccination programs and posttransplantation prophylaxis of recurrent hepatitis need to be developed that may prevent immune escape mutant HBV from spreading and to prevent these strains from becoming dominant during the next decennia.  相似文献   

16.
The antiviral effect of interferon-alpha (IFNalpha) on hepatitis B virus (HBV) is well documented in vitro and in vivo, but the mechanisms involved are elusive. Recently, an interferon-stimulated response like element (ISRE) competent for binding of interferon-stimulated gene factor-3gamma (p48) has been identified in the HBV enhancer I region. Mutation of this element was shown to abrogate IFNalpha-mediated reduction of HBV X-gene promoter-driven reporter gene expression. This suggested a role of the ISRE and of p48 in IFNalpha-induced antiviral activity against productive HBV infection. Here, we analyzed the antiviral effect of both IFNalpha and enhanced p48 expression on complete HBV genomes containing the wild-type or mutated ISRE. In human hepatoma cells transfected with both genomes, viral RNA and replicative intermediates were reduced by IFNalpha treatment to a similar degree. Enhanced p48 expression increased IFNalpha-induced suppression of HBV RNA significantly from 75 +/- 22.5% to 46 +/- 9.8%, but this was independent of the integrity of the ISRE-like region. These data imply that p48 neither mediates the antiviral activity of IFNalpha against HBV nor down-regulates enhancer I activity by binding directly to the HBV ISRE-like region, but rather argue for an indirect role of p48.  相似文献   

17.
18.
We used in vitro mutagenesis in the 3' region of the avian retrovirus polymerase (pol) gene to genetically define the role of the DNA endonuclease domain. In-frame insertional mutations, which were dispersed throughout the 5' region of pp32, produced a series of five replication-deficient mutants. In contrast, a single point mutant (Ala----Pro) located 48 amino acids from the NH2 terminus of pp32 exhibited a delayed replication phenotype. Molecular analysis of this mutant demonstrated that upon infection it was capable of synthesizing both linear and circular species of unintegrated viral DNA. The levels of unintegrated viral DNA present in cells infected with the mutant virus were several times greater than wild-type levels. Quantitation of the amount of integrated viral genomes demonstrated that the mutant virus integrated viral DNA one-fifth as efficiently as wild-type virus. This single point mutation in the NH2 terminus of pp32 prevented efficient integration of viral DNA, with no apparent effect on viral DNA synthesis per se. Thus, the DNA endonuclease domain has been genetically defined as necessary for avian retrovirus integration.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号