首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Aim To examine the relationship between diadromy and dispersal ability in New Zealand’s freshwater fish fauna, and how this affects the current environmental and geographic distributions of both diadromous and non‐diadromous species. Location New Zealand. Methods Capture data for 15 diadromous and 15 non‐diadromous fish species from 13,369 sites throughout New Zealand were analysed to establish features of their geographic ranges. Statistical models were used to determine the main environmental correlates of species’ distributions, and to establish the environmental conditions preferred by each species. Environmental predictors, chosen for their functional relevance, were derived from an extensive GIS database describing New Zealand’s river and stream network. Results In terms of geography, most diadromous species occur in a scattered fashion throughout extensive geographic ranges, and occupy large numbers of catchments of widely varying size. By contrast, most non‐diadromous species show relatively high levels of occupancy of smaller geographic ranges, and most are restricted to a few large catchments, particularly in the eastern South Island. In terms of environment, there is marked separation of diadromous from non‐diadromous species, with diadromous species generally caught most frequently in low‐gradient coastal rivers and streams with warm, maritime climates. With a few notable exceptions, most diadromous species have lower occurrence in river segments that are located above obstacles to upstream migration. Non‐diadromous species are usually caught in inland rivers and streams with cool, strongly seasonal climates, typified by a low frequency of high‐intensity rainfall events. Main conclusions We interpret the contrasting biogeographies of New Zealand’s diadromous and non‐diadromous species as reflecting interaction between their marked differences in dispersal ability and a landscape that is subject to recurrent, often large‐scale, natural disturbance. While both groups are likely to be equally susceptible to local, disturbance‐driven extinction, the much greater dispersal ability of diadromous species has allowed them to persist over wide geographic ranges. By contrast, the distributions of most non‐diadromous species are concentrated in a few large catchments, mostly in regions where less intense natural disturbance regimes are likely to have favoured their survival.  相似文献   

4.
1. In a region of south‐eastern England, we investigated the hierarchical genetic structure of populations of two stream‐dwelling caddisflies (Trichoptera: Polycentropodidae) with contrasting distributions: Plectrocnemia conspersa inhabits numerous small, patchily distributed seeps and streams, while the confamilial Polycentropus flavomaculatus is found in fewer but larger streams and rivers. We also contrasted the genetic structure of P. conspersa in the lowland south‐east with that in an upland region in the north west. 2. Microsatellite genotypes were obtained from samples of both species taken from a ‘core area’ and at sites 15, 40 and 100 km from this core (two regions for P. conspersa, totalling 45 sites and 1405 larvae; one region for P. flavomaculatus, totalling 10 sites and 269 larvae). 3. The genetic structure of P. conspersa differed in the two regions. In the upland north‐west, significant genetic differentiation was observed at a spatial scale of around 40 km from the core, while there was no structure in the lowland south‐east up to around 100 km. Areas of high altitude did not appear directly to reduce gene flow, whereas other potential landscape barriers, including particular geological formations, large urban areas and the sea had a pronounced effect. 4. Weak genetic differentiation in P. conspersa across large distances, particularly in the lowland south‐east, suggests that it disperses strongly, facilitating gene flow within and between catchments. Conversely, for P. flavomaculatus we found strong genetic differentiation between almost all sites, suggesting that dispersal is much more limited. 5. Greater dispersal in the patchily distributed P. conspersa than in P. flavomaculatus, which occupies larger and presumably more persistent habitats, could be a general feature of other similarly distributed aquatic insects. While higher relief is potentially a partial barrier to dispersal, P. conspersamust have effective gene flow through such apparently inhospitable terrain, perhaps attributable to dispersal between neighbouring small and ephemeral populations. Indeed, its exploitation of headwaters and seeps requires the ability to disperse between such sites. Apparently it cannot, however, overcome more continuous barriers, consisting of large tracts of landscape with few habitable larval sites. Such landscapes, including those created by humans, may have a stronger effect on population connectivity and colonization in the longer term.  相似文献   

5.
6.
1. We determined whether two sympatric mitochondrial DNA (mtDNA) lineages of freshwater shrimp (Decapoda: Atyidae: Paratya australiensis) represent biological species and if they had concerted or independent population responses to hydrographic factors in small streams (the Granite Creeks) in southeastern Australia. 2. Allozyme data indicated the presence of two gene pools at sites where the P. australiensis lineages were co‐occurring and the gene pools were statistically assigned with high probability to each respective lineage. This indicated that these mtDNA lineages in P. australiensis were reproductively isolated and thus biological species. 3. Populations of both lineages were genetically homogeneous among lowland sites within streams, but were isolated by steep stream gradients among upland sites and for lowland–upland site comparisons. However, the magnitude of differentiation was markedly different between the two lineages. Allozyme diversity also differed between the two lineages, suggesting that they have different effective population sizes. Thus, differences in the magnitude of genetic divergence among populations were probably because of different life‐history characteristics, including dispersal ability and population size. 4. Genetic population structure was mostly temporally stable, despite the extreme effects of drought during the first year and substantial stream‐flow during the second. However, stable isotope analyses revealed greater local movement in both lineages during the second year, as greater hydrological connectivity provided more opportunities for dispersal. Thus, although lowland populations within streams were genetically homogeneous, stable isotope data indicated that connections may be sporadic and result from accumulated small‐scale movements among refugial pools. 5. Both lineages were therefore found to have similar small‐scale population responses to the unstable habitats of the Granite Creeks. Results highlight the importance of refugia for the capacity of biota to recover from drought and the need for multiple restored patches to reinstate natural population processes (e.g. resilience, recolonization) in degraded systems.  相似文献   

7.
8.
1. As the climate changes, species are expected to shift to higher latitudes and altitudes where suitable habitat is available if dispersal is not constrained by geographic barriers. We analyse patterns of turnover in freshwater macroinvertebrate assemblages to identify which communities are most likely to be at risk from climate change, and the location of geographic barriers that could impede such adaptive range shifts. 2. We analysed macroinvertebrate data from standard biological assessments at the family level, from surveys of all coastal basins of New South Wales, Australia, covering a latitudinal gradient of more than 1000 km. We used variance partitioning to separate the variation in composition explained by climate, among‐site distance, human disturbance and other stream factors. 3. Montane stream assemblages showed high turnover in response to climatic variation. Turnover in coastal‐fringe streams was least affected by climate, but strongly correlated with distance and stream variables. Significant shifts in assemblage composition occurred between habitats within catchments and across catchment boundaries. 4. Montane stream assemblages are most vulnerable to climate change because their distribution is most responsive to climatic factors, and elevated sites are isolated from one another, reducing the scope for altitudinal migration. Dispersal limitations in coastal‐fringe assemblages will also increase their vulnerability to habitat loss from sea‐level rise. For all stream classes, the separation of many neighbouring catchment assemblages, owing to either limited dispersal or the lack of suitable habitat, is likely to constrain adaptive range shifts. This would lead to an overall reduction in beta diversity among reaches and subsequently to a reduction in landscape‐level gamma diversity.  相似文献   

9.
ABSTRACT. Benthic microcrustaceans were sampled from forty-three streams in two physiographically contrasting regions of Britain: lowland southern England and upland Wales. Lowland streams had a significantly higher species richness than upland streams and, of the forty-three copepod and cladoceran species identified, only fourteen (33%) were found in both the lowlands and uplands. Canonical correspondence analysis revealed large differences in community structure between regions and between streams within regions. Differences within regions were related to pH, the distance downstream of a site and the presence of upstream impoundments. Variables underlying the large biological differences between regions are also discussed, including differences in chemistry (ionic content), physical parameters (e.g. flow), habitat availability and the influence of species biogeography. The importance of understanding species ecology and biogeography when assessing pollution impacts on stream communities is emphasized and a model is proposed for predicting the composition of microcrustacean communities in temperate European streams.  相似文献   

10.
Macroinvertebrate diversity in headwater streams: a review   总被引:1,自引:0,他引:1  
1. Headwater streams are ubiquitous in the landscape and are important sources of water, sediments and biota for downstream reaches. They are critical sites for organic matter processing and nutrient cycling, and may be vital for maintaining the 'health' of whole river networks.
2. Macroinvertebrates are an important component of biodiversity in stream ecosystems and studies of macroinvertebrate diversity in headwater streams have mostly viewed stream systems as linear reaches rather than as networks, although the latter may be more appropriate to the study of diversity patterns in headwater systems.
3. Studies of macroinvertebrate diversity in headwater streams from around the world illustrated that taxonomic richness is highly variable among continents and regions, and studies addressing longitudinal changes in taxonomic richness of macroinvertebrates generally found highest richness in mid-order streams.
4. When stream systems are viewed as networks at the landscape-scale, α-diversity may be low in individual headwater streams but high β-diversity among headwater streams within catchments and among catchments may generate high γ-diversity.
5. Differing ability and opportunity for dispersal of macroinvertebrates, great physical habitat heterogeneity in headwater streams, and a wide range in local environmental conditions may all contribute to high β-diversity among headwater streams both within and among catchments.
6. Moving beyond linear conceptual models of stream ecosystems to consider the role that spatial structure of river networks might play in determining diversity patterns at the landscape scale is a promising avenue for future research.  相似文献   

11.
Macrophyte communities of European streams with altered physical habitat   总被引:2,自引:2,他引:0  
The impact of altering hydro-morphology on three macrophyte community types was investigated at 107 European stream sites. Sites were surveyed using standard macrophyte and habitat survey techniques (Mean Trophic Rank Methodology and River Habitat Survey respectively). Principal Components Analysis shows the macrophyte community of upland streams live in a more structurally diverse physical habitat than lowland communities. Variables representing the homogeneity and diversity of the physical environment were used to successfully separate un-impacted from impacted sites, e.g. homogeneity of depth and substrate increased with decreasing quality class for lowland sites (ANOVA p < 0.05). Macrophyte attribute groups and structural metrics such as species richness were successfully linked to hydro-morphological variables indicative of impact. Most links were specific to each macrophyte community type, e.g., the attribute group liverworts, mosses and lichens decreased in abundance with increasing homogeneity of depth and decreasing substrate size at lowland sites but not at upland sites. Elodea canadensis, Sparganium emersum and Potamogeton crispus were indicative of impacted lowland sites. Many of the indicator species are also known to be tolerant to other forms of impact. The potential for a macrophyte tool indicative of hydro-morphological impact is discussed. It is concluded one could be constructed by combining indicator species and metrics such as species richness and evenness.  相似文献   

12.
1. Populations in different locations can exchange individuals depending on the distribution and connectivity of suitable habitat, and the dispersal capabilities and behaviour of the organisms. We used an isotopic tracer, 15N, to label stoneflies (Leuctra ferruginea) to determine the extent of adult flight along stream corridors and between streams where their larvae live. 2. In four mass, mark‐capture experiments we added 15NH4Cl continuously for several weeks to label specific regions of streams within the Hubbard Brook Experimental Forest, NH, U.S.A. We collected adult stoneflies along the labelled streams (up to 1.5 km of stream length), on transects through the forest away from labelled sections (up to 500 m), and along an 800‐m reach of adjacent tributary that flows into a labelled stream. 3. Of 966 individual adult stoneflies collected and analysed for 15N, 20% were labelled. Most labelled stoneflies were captured along stream corridors and had flown upstream a mean distance of 211 m; the net movement of the population (upstream + downstream) estimated from the midpoint of the labelled sections was 126 m upstream. The furthest male and female travelled approximately 730 m and approximately 663 m upstream, respectively. We also captured labelled mature females along an unlabelled tributary and along a forest transect 500 m from the labelled stream, thus demonstrating cross‐watershed dispersal. 4. We conclude that the adjacent forest was not a barrier to dispersal between catchments, and adult dispersal linked stonefly populations among streams across a landscape within one generation. Our data on the extent of adult dispersal provide a basis for a conceptual model identifying the boundaries of these populations, whose larvae are restricted to stream channels, and whose females must return to streams to oviposit.  相似文献   

13.
1. Habitat fragmentation has been implicated as a primary cause for the ongoing erosion of global biodiversity, yet our understanding of the consequences in lotic systems is limited for many species and regions. Because of harsh environmental conditions that select for high colonisation rates, prairie stream fishes may be particularly vulnerable to the effects of fragmentation. Hence, there is urgent need for broader understanding of fragmentation in prairie streams such that meaningful conservation strategies can be developed. Further, examination at large spatial scales, including multiple impoundments and un‐impounded catchments, will help identify the spatial extent of species movement through the landscape. 2. Our study used data from 10 microsatellite loci to describe the genetic structure of creek chub (Semotilus atromaculatus) populations across four catchments (three impounded and one un‐impounded) in the Kansas River basin. We investigated whether genetic diversity was eroded in response to habitat fragmentation imposed by reservoirs and whether intervening lentic habitat increased resistance to dispersal among sites within a catchment. 3. Our analyses revealed that genetic diversity estimates were consistent with large populations regardless of the location of the sampled tributaries, and there was little evidence of recent population reductions. Nevertheless, we found a high degree of spatial genetic structure, suggesting that catchments comprise a set of isolated genetic units and that sample sites within catchments are subdivided into groups largely defined by intervening habitat type. Our data therefore suggest that lentic habitat is a barrier to dispersal among tributaries, thus reducing the opportunity for genetic rescue of populations in tributaries draining into reservoirs. Isolation by a reservoir, however, may not be immediately deleterious if the isolated tributary basin supports a large population.  相似文献   

14.
1. Terrestrial dispersal by aquatic insects increases population connectivity in some stream species by allowing individuals to move outside the structure of the stream network. In addition, individual survival and reproductive success (as well as dispersal) are tightly linked to the quality of the terrestrial habitat. 2. In historically forested catchments, deforestation and altered land use have the potential to interfere with mayfly dispersal or mating behaviours by degrading the quality of the terrestrial matrix among headwater streams. We hypothesised that loss of tree cover in first‐order catchments would be associated with an increase in population substructure and a decrease in genetic diversity of mayfly populations. 3. To test this hypothesis, we investigated spatial patterns of genetic variation in the common mayfly Ephemerella invaria across a gradient of deforestation in the central piedmont region of eastern United States. Intraspecific genetic diversity and population substructure were estimated from data obtained using fluorescent amplified fragment length polymorphism (AFLP) markers. 4. We found that mayfly populations had low population substructure within headwater stream networks and that genetic diversity was strongly negatively correlated with mean deforestation of the first‐order catchments. The large‐scale pattern of population substructure followed a pattern of isolation by distance (IBD) in which genetic differentiation increases with geographical distance, but assignment tests placed a few individuals into populations 300 km away from the collection site. 5. Our results show that loss of genetic diversity in this widespread aquatic insect species is co‐occurring with deforestation of headwater streams. 6. Most arguments supporting protection of headwater streams in the United States have centred on the role of these streams as hydrological and biogeochemical conduits to downstream waters. Our work suggests that headwater stream land use, and specifically tree cover, may have a role in the maintenance of regional genetic diversity in some common aquatic insect species.  相似文献   

15.
16.
Aim To incorporate dispersal through stream networks into models predicting the future distribution of a native, freshwater fish given climate change scenarios. Location Sweden. Methods We used logistic regression to fit climate and habitat data to observed pike (Esox lucius Linnaeus) distributions in 13,476 lakes. We used GIS to map dispersal pathways through streams. Lakes either (1) contained pike or were downstream from pike lakes, (2) were upstream from pike lakes, but downstream from natural dispersal barriers, or (3) were isolated from streams or were upstream from natural dispersal barriers. We then used climate projections to model future distributions of pike and compared our results with and without including dispersal. Results Given climate and habitat, pike were predicted present in all of 99,249 Swedish lakes by 2100. After accounting for dispersal barriers, we only predicted pike presence in 31,538 lakes. Dispersal barriers most strongly limited pike invasion in mountainous regions, but low connectivity also characterized some relatively flat regions. Main conclusions The dendritic network structure of streams and interconnected lakes makes a two‐dimensional representation of the landscape unsuitable for predicting range shifts of many freshwater organisms. If dispersal through stream networks is not accounted for, predictions of future fish distributions in a warmer climate might grossly overestimate range expansions of warm and cool‐water fishes and underestimate range contractions of cold‐water fishes. Dispersal through stream networks can be modelled in any region for which a digital elevation model and species occurrence data are available.  相似文献   

17.
Terrestrial environments allow the adults of some aquatic insects to disperse between headwater streams, which may be important for maintaining population connectivity and persistence. Winged adult stages of aquatic insects are particularly sensitive to degradation of terrestrial habitat, relying on it for food, reproduction and dispersal. In this study we examined the genetic pattern of the Australian mayfly Ulmerophlebia sp. AV2, in north‐eastern New South Wales, and compared the genetic diversity in forested and partially deforested sub‐catchments. Our hypotheses were (i) patterns of mitochondrial DNA (mtDNA) variation in the Leptophlebiidae mayfly Ulmerophlebia sp. AV2 show a pattern of structuring that reflects low or widespread dispersal along the stream network and across catchments; and (ii) genetic diversity will be lower in partially deforested sub‐catchments compared to forested sub‐catchments. We found gene flow was not restricted among headwater streams within sub‐catchments but was restricted at distances >15 km. Genetic diversity was high (mean haplotype diversity >0.85) in both control and harvested sub‐catchments. Instead, a historical signature of population expansion was detected which is consistent with findings for other aquatic insect taxa of eastern Australia. Our results suggest that the selective harvesting management strategy, including the use of riparian buffer zones, within these sub‐catchments does not appear to restrict dispersal between streams or erode diversity within streams for Ulmerophlebia sp. AV2. Selective harvesting therefore appears to have minimal impacts on terrestrial/aquatic links in the life cycle of this insect.  相似文献   

18.
19.
This paper considers, for eight species of woodland bird, the factors that influenced both local extinctions and recolonisations in 145 woods over 3 years. In all species, probability of local extinction was inversely related to population size; most local extinctions occurred in woods containing one to three breeding pairs. However, considerable variation in extinction probabilities occurred between species and between years. In addition, the suitability of habitat within a wood (more extinctions in less suitable woods) was important for wren Troglodytes troglodytes, song thrush Turdus philomelos and blue tit Parus caeruleus; also, the structure of the surrounding landscape was important for blue tit, great tit Parus major, and chaffinch Fringilla coelebs (more extinctions in localities with less woodland). In only two species was the probability of recolonisation related to any of the measured variables. Wrens were more likely to recolonise larger woods, whereas song thrushes were more likely to recolonise woods with a high habitat suitability rating and those which are more isolated from other woodland  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号