首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We compared different hybridization conditions of oligonucleotide-based DNA microarray to acquire optimized and reliable microarray data. Several parameters were evaluated at different hybridization conditions, including signal-to-background (S:B) ratios, signal dynamic range, usable spots, and reproducibility. Statistical analysis showed that better results were obtained when spotted, presynthesized long oligonucleotide arrays were blocked with succinic anhydride and hybridized at 42°C in the presence of 50% formamide.  相似文献   

3.
We describe novel peptide-protein microarrays, which were fabricated using semicarbazide glass slides that permitted the immobilization of glyoxylyl peptides by site-specific ligation and the immobilization of proteins by physisorption. The arrays permitted the simultaneous serodetection of antibodies directed against hepatitis C virus (HCV core p21 15-45 peptide, NS4 1925-1947 peptide, core, NS3, NS4, and mixture of core, NS3, NS4, and NS5 antigens), hepatitis B virus (HBc, HBe, and HBs), human immunodeficiency virus (Gp41 and Gp120 for HIV-I and Gp36 for HIV-II), Epstein-Barr virus (VCAp18 153-176 peptide), and syphilis (rTpN47 and rTpN17) antigens using an immunofluorescence assay. Peptide-protein microarrays displayed high signal-to-noise ratios, sensitivities, and specificities for the detection of antibodies as revealed by the analysis of a collection of human sera referenced against these five pathogens.  相似文献   

4.
Suspension microsphere immunoassays are rapidly gaining recognition in antigen identification and infectious disease biodetection due to their simplicity, versatility and high-throughput multiplex screening. We demonstrate a multiplex assay based on antibody-functionalized barcoded resins (BCRs) to identify pathogen antigens in complex biological fluids. The binding event of a particular antibody on given bead (fluorescence) and the identification of the specific pathogen agent (vibrational fingerprint of the bead) can be achieved in a dispersive Raman system by exciting the sample with two different laser lines. Anthrax protective antigen, Franciscella tularensis lipopolysaccharide and CD14 antigens were accurately identified and quantified in tetraplex assays with a detection limit of 1 ng/mL. The rapid, versatile and simple analysis enabled by the BCRs demonstrates their potential for multiplex antigen detection and identification in a reconfigurable microarray format.  相似文献   

5.
Oligonucleotide microarrays offer the potential to efficiently test for multiple organisms, an excellent feature for surveillance applications. Among these, resequencing microarrays are of particular interest, as they possess additional unique capabilities to track pathogens’ genetic variations and perform detailed discrimination of closely related organisms. However, this potential can only be realized if the costs of developing the detection microarray are kept at a manageable level. Selection and verification of the probes are key factors affecting microarray design costs that can be reduced through the development and use of in silico modeling. Models created for other types of microarrays do not meet all the required criteria for this type of microarray. We describe here in silico methods for designing resequencing microarrays targeted for multiple organism detection. The model development presented here has focused on accurate base-call prediction in regions that are applicable to resequencing microarrays designed for multiple organism detection, a variation from other uses of a predictive model in which perfect prediction of all hybridization events is necessary. The model will assist in simplifying the design of resequencing microarrays and in reduction of the time and costs required for their development for new applications.  相似文献   

6.
Numerous waterborne pathogens are difficult to detect and enumerate with accuracy due to methodological limitations and high costs of direct culturing. The purity of DNA extracted from wastewater samples is an important issue in the sensitivity and the usefulness of molecular methods such as polymerase chain reaction (PCR) and hybridizations on DNA microarrays. Ten different DNA extraction procedures, including physical and chemical extraction and purification steps, were examined to ascertain their relative effectiveness for extracting bacterial DNA from wastewater samples. The quality of the differentially extracted DNAs was subsequently assessed by PCR amplification and microarray hybridization. Our results showed that great differences existed among the ten procedures and only a few of the methods gave satisfactory results when applied to bacterial pathogens. This observation suggested that the extraction method needed to be carefully selected to produce significant and confident results in the detection of pathogens from environmental samples.  相似文献   

7.
8.
Quantitative detection of microbial genes by using DNA microarrays   总被引:8,自引:0,他引:8  
To quantify target genes in biological samples using DNA microarrays, we employed reference DNA to normalize variations in spot size and hybridization. This method was tested using nitrate reductase (nirS), naphthalene dioxygenase (nahA), and Escherichia coli O157 O-antigen biosynthesis genes as model genes and lambda DNA as the reference DNA. We observed a good linearity between the log signal ratio and log DNA concentration ratio at DNA concentrations above the method's detection limit, which was approximately 10 pg. This approach for designing quantitative microarrays and the inferred equation from this study provide a simple and convenient way to estimate the target gene concentration from the hybridization signal ratio.  相似文献   

9.
Mercury is a highly toxic metal that can cause significant harm to humans and aquatic ecosystems. This paper describes a novel approach for mercury (Hg(2+)) ion detection by using label-free oligonucleotide probes and Escherichia coli exonuclease I (Exo I) in a microfluidic electrophoretic separated platform. Two single-stranded DNAs (ssDNA) TT-21 and TT-44 with 7 Thymine-Thymine mispairs are employed to capture mercury ions. Due to the coordination structure of T-Hg(2+)-T, these ssDNAs are folded into hairpin-like double-stranded DNAs (dsDNA) which are more difficult to be digested by Exo I, as confirmed by polyacrylamide gel electrophoresis (PAGE) analysis. A series of microfluidic capillary electrophoretic separation studies are carried out to investigate the effect of Exo I and mercury ion concentrations on the detected fluorescence intensity. This method has demonstrated a high sensitivity of mercury ion detection with the limit of detection around 15 nM or 3 ppb. An excellent selectivity of the probe for mercury ions over five interference ions Fe(3+), Cd(2+), Pb(2+), Cu(2+) and Ca(2+) is also revealed. This method could potentially be used for mercury ion detection with high sensitivity and reliability.  相似文献   

10.
11.
Colorimetric silver detection of DNA microarrays   总被引:14,自引:0,他引:14  
Development of microarrays has revolutionized gene expression analysis and molecular diagnosis through miniaturization and the multiparametric features. Critical factors affecting detection efficiency of targets hybridization on microarray are the design of capture probes, the way they are attached to the support, and the sensitivity of the detection method. Microarrays are currently detected in fluorescence using a sophisticated confocal laser-based scanner. In this work, we present a new colorimetric detection method which is intented to make the use of microarray a powerful procedure and a low-cost tool in research and clinical settings. The signal generated with this method results from the precipitation of silver onto nanogold particles bound to streptavidin, the latter being used for detecting biotinylated DNA. This colorimetric method has been compared to the Cy-3 fluorescence method. The detection limit of both methods was equivalent and corresponds to 1 amol of biotinylated DNA attached on an array. Scanning and data analysis of the array were obtained with a colorimetric-based workstation.  相似文献   

12.
Identification of microbial pathogens in clinical specimens is still performed by phenotypic methods that are often slow and cumbersome, despite the availability of more comprehensive genotyping technologies. We present an approach based on whole‐genome amplification and resequencing microarrays for unbiased pathogen detection. This 10 h process identifies a broad spectrum of bacterial and viral species and predicts antibiotic resistance and pathogenicity and virulence profiles. We successfully identify a variety of bacteria and viruses, both in isolation and in complex mixtures, and the high specificity of the microarray distinguishes between different pathogens that cause diseases with overlapping symptoms. The resequencing approach also allows identification of organisms whose sequences are not tiled on the array, greatly expanding the repertoire of identifiable organisms and their variants. We identify organisms by hybridization of their DNA in as little as 1–4 h. Using this method, we identified Monkeypox virus and drug‐resistant Staphylococcus aureus in a skin lesion taken from a child suspected of an orthopoxvirus infection, despite poor transport conditions of the sample, and a vast excess of human DNA. Our results suggest this technology could be applied in a clinical setting to test for numerous pathogens in a rapid, sensitive and unbiased manner.  相似文献   

13.
We describe the benefit of using reconstructed ancestral sequences (RAS) on resequencing microarrays for rapid pathogen identification, with Enterobacteriaceae rpoB sequences as a model. Our results demonstrate a sharp improvement of call rate and accuracy when using RASs as compared to extant sequences. This improvement was attributed to the lower sequence divergence of RASs, which also expanded the sequence space covered by the microarray. Extension of this novel microarray design strategy to viruses, antimicrobial resistance elements or toxins is straightforward.  相似文献   

14.
Subspecies 1 of Salmonella enterica is responsible for almost all Salmonella infections of warm-blooded animals. Within subspecies 1 there are over 2,300 known serovars that differ in their prevalence and the diseases that they cause in different hosts. Only a few of these serovars are responsible for most Salmonella infections in humans and domestic animals. The gene contents of 79 strains from the most prevalent serovars were profiled by microarray analysis. Strains within the same serovar often differed by the presence and absence of hundreds of genes. Gene contents sometimes differed more within a serovar than between serovars. Groups of strains that share a distinct profile of gene content can be referred to as "genovars" to distinguish them from serovars. Several misassignments within the Salmonella reference B collection were detected by genovar typing and were subsequently confirmed serologically. Just as serology has proved useful for understanding the host range and pathogenic manifestations of Salmonella, genovars are likely to further define previously unrecognized specific features of Salmonella infections.  相似文献   

15.
Label-free detection methods for protein microarrays   总被引:1,自引:0,他引:1  
Yu X  Xu D  Cheng Q 《Proteomics》2006,6(20):5493-5503
With the growth of the "-omics" such as functional genomics and proteomics, one of the foremost challenges in biotechnologies has become the development of novel methods to monitor biological process and acquire the information of biomolecular interactions in a systematic manner. To fully understand the roles of newly discovered genes or proteins, it is necessary to elucidate the functions of these molecules in their interaction network. Microarray technology is becoming the method of choice for such a task. Although protein microarray can provide a high throughput analytical platform for protein profiling and protein-protein interaction, most of the current reports are limited to labeled detection using fluorescence or radioisotope techniques. These limitations deflate the potential of the method and prevent the technology from being adapted in a broader range of proteomics applications. In recent years, label-free analytical approaches have gone through intensified development and have been coupled successfully with protein microarray. In many examples of label-free study, the microarray has not only offered the high throughput detection in real time, but also provided kinetics information as well as in situ identification. This article reviews the most significant label-free detection methods for microarray technology, including surface plasmon resonance imaging, atomic force microscope, electrochemical impedance spectroscopy and MS and their applications in proteomics research.  相似文献   

16.
This paper describes a highly sensitive and selective Hg(2+) sensor using a label free Hg(2+) specific probe (5'-18T-3') and an intercalation dye SYBR Green I (SG). The Hg(2+) specific probe is composed of thymines (T) and readily forms T-Hg(2+)-T complexes in the presence of Hg(2+). This specific T-Hg(2+)-T formation affects the hybridization of the Hg(2+) specific probe and the intercalation of SG. Upon treatment of 1 nM 5'-18T-3' with different amount of Hg(2+) (0.1-10nM), which is followed by hybridization with 1 nM 5'-18T-3' and incubation with 1 microL of SG, the solution fluorescence gave a linear response (R=0.996) to the concentration of Hg(2+). The detection limit for Hg(2+) was 0.5 nM (0.1 ppb). The overall test only takes few minutes and very little interference is observed from non-specific metal ions. This approach may find potential applications in monitoring the Hg(2+) concentration in drinking water.  相似文献   

17.
The field of proteomics has undergone rapid advancements over the last decade and protein microarrays have emerged as a promising technological platform for the challenging task of studying complex proteomes. This gel-free approach has found an increasing number of applications due to its ability to rapidly and efficiently study thousands of proteins simultaneously. Different protein microarrays, including capture arrays, reverse-phase arrays, tissue microarrays, lectin microarrays and cell-free expression microarrays, have emerged, which have demonstrated numerous applications for proteomics studies including biomarker discovery, protein interaction studies, enzyme-substrate profiling, immunological profiling and vaccine development, among many others. The need to detect extremely low-abundance proteins in complex mixtures has provided motivation for the development of sensitive, real-time and multiplexed detection platforms. Conventional label-based approaches like fluorescence, chemiluminescence and use of radioactive isotopes have witnessed substantial advancements, with techniques like quantum dots, gold nanoparticles, dye-doped nanoparticles and several bead-based methods now being employed for protein microarray studies. In order to overcome the limitations posed by label-based technologies, several label-free approaches like surface plasmon resonance, carbon nanotubes and nanowires, and microcantilevers, among others, have also advanced in recent years, and these methods detect the query molecule itself. The scope of this article is to outline the protein microarray techniques that are currently being used for analytical and function-based proteomics and to provide a detailed analysis of the key technological advances and applications of various detection systems that are commonly used with microarrays.  相似文献   

18.
The discovery of complex structural variations that exist within individual genomes has prompted a need to visualize chromosomes at a higher resolution than previously possible. To address this concern, we established a robust, high-resolution fluorescence in situ hybridization (FISH) method that utilizes probes derived from high complexity libraries of long oligonucleotides (>150 mers) synthesized in massively parallel reactions. In silico selected oligonucleotides, targeted to only the most informative elements in 18 genomic regions of interest, eliminated the need for suppressive hybridization reagents. Because of the inherent flexibility in our probe design methods, we readily visualized regions as small as 6.7 kb with high specificity on human metaphase chromosomes, resulting in an overall success rate of 94%. Two-color FISH over a 479-kb duplication, initially reported as being identical in 2 individuals, revealed distinct 2-color patterns representing direct and inverted duplicons, demonstrating that visualization by high-resolution FISH provides further insight in the fine-scale complexity of genomic structures. The ability to design FISH probes for any sequenced genome along with the ease, reproducibility, and high level of accuracy of this technique suggests that it will be powerful for routine analysis of previously difficult genomic regions and structures.  相似文献   

19.
An evanescent field fibre optic sensor was employed for detecting and monitoring aerobiological pathogen contamination in hospital environment. Measurements of methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae colonies were detected in 6 and 13 h, respectively, faster than those obtained by means of conventional techniques. All of the bacteria growth phases were clearly time resolved by means of the optical sensor. The 0.33 cm2 sensitive surface area fibre optic transducer also exhibited reproducibility, was of easy construction and low cost, which greatly enhances its potential and usefulness.  相似文献   

20.
A high-resolution scanning Kelvin nanoprobe is introduced as an alternative technique to the conventional fluorescence and mass spectrometric detection methods currently employed in nucleic acid and protein microarray technology. The new instrument is capable of the highly sensitive discernment of surface biochemical events taking place at molecular level such as nucleic acid hybridization and antibody-antigen interaction. The method involves measurement of changes in work function and surface potential instigated by such interactions. Being a label-free and non-contact technique, the structure, spatial configuration, local properties or function of the molecular system under study are not affected, nor perturbed by intercalating dyes, a strong electric field or ionizing beam. Subsequent to scanning, the microarray can be examined by other alternative approaches. Nucleic acids and proteins have been printed in microarray format on slides with a gold film in place using gold-sulphur interactive chemistry. Hybridization of nucleic acids for complementary and mismatched configurations shows consistent and reproducible values of work function. Differentiation of single internal mismatches is demonstrated. Protein concentration and formation of antibody-antigen pairs can be visualized and examined with high sensitivity and good inter-spot reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号