首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fed batch experiments were performed to test the effects of electron donor and electron acceptor availability on the production of chloroform (CF) during carbon tetrachloride (CT) destruction by a denitrifying bacterial consortium. In one series of tests, acetate (electron donor) was present in excess while nitrate and nitrite (electron acceptor) were limiting. In the other series of tests, acetate was the limiting nutrient, and nitrate and nitrite were in excess. Under nitrate limiting conditions, 50% (+/-17%) of the CT transformed by the microorganisms was converted to CF. However, under acetate limiting conditions, only 4% (+/-4%) of the CT that was degraded appeared as CF. Previous research had suggested that denitrifying bacteria can degrade CT via two competing pathways. One of these pathways produces CF as the predominant end product. The second pathway produces CO(2) as the primary end product. The results shown here suggest that the first pathway is dominant when nitrate and nitrite are depleted while the second pathway, which produces little CF, dominates when nitrate or nitrite are available.  相似文献   

2.
A fluidized-bed reactor, with sand as the carrier and ethanol as the carbon and electron source, was investigated for the biological denitrification of ground water. The paper concentrates on the reactor's kinetics, with special emphasis on nitrite as the intermediate product. Intrinsic zero-order kinetic parameters for both nitrate and nitrite were determined by batch and continuous experiments. Values for the maximum specific nitrate and nitrite removal rates of 11 g and 6 g NO inf3 sup– (g volatile suspended solids)–1 day–1, respectively, were obtained. These values were used to interpret nitrate and nitrate concentration profiles in an experimental fluidized-bed reactor operating at different conditions of hydraulic loading and retention time.  相似文献   

3.
Chung J  Bae W 《Biodegradation》2002,13(3):163-170
Dissimilative reduction of nitrite by nitrite-acclimated cellswas investigated in a batch reactor under various environmental conditions that can beencountered in shortcut biological nitrogen removal (SBNR: ammonia to nitrite andnitrite to nitrogen gas). The maximum specific nitrite reduction rate was as much as 4.3 times faster than the rate of nitrate reduction when individually tested, but the reaction was inhibited in the presence of nitrate when the initial nitrate concentration was greater than approximately 25 mg-N/l or the initialNO 3 - N/NO 2 - N ratio was larger than 0.5. Nitrite reduction was also inhibited by nitrite itself when theconcentration was higher than that to which the cells had been acclimated. Therefore, it was desirable to avoid excessively high nitrite and nitrate concentrations in a denitrification reactor. Nitrite reduction, however, was not affected by an alkaline pH (in the range of 7–9) or a high concentration of FA (in the range of 16–39 mg/l), which can be common in SBNR processes. The chemical oxygen demand (COD) requirement for nitrite reduction was approximately 22–38% lower than that for nitrate reduction, demonstrating that the SBNR process can be economical. The specific consumption,measured as the ratio of COD consumed to nitrogen removed, was affected by the availability of COD and the physiological state of the cells. The ratio increased when the cells grew rapidly and were storing carbon and electrons.  相似文献   

4.
《Process Biochemistry》2014,49(12):2228-2234
The competition for electrons has been recently demonstrated to affect the reduction rates of the nitrogen oxides in a methanol enriched denitrifying community. The aim of this study was to test if electron competition also occurred when other substrates were used for denitrification and if that could have an effect on the potential nitrous oxide (N2O) production and subsequent consumption. A denitrifying culture was developed in a sequencing batch reactor using nitrate as electron acceptor and a combination of acetate, ethanol and methanol as carbon sources. Four sets of batch tests were conducted using acetate, ethanol, methanol and a combination of the three carbon sources respectively. For each set the effect of nitrate, nitrite and nitrous oxide on each other reduction rates when present individually or in combination was assessed. Results show that reduction rates are affected by the type of substrate added, probably due to different microbial populations specialized with consuming a particular substrate. Also, N2O reduction rate is the most reduced under the different electron competition scenarios tested, which results in N2O accumulation in some cases. The effect of substrate limitation on N2O reduction was also assessed.  相似文献   

5.
It is important to determine the effect of changing environmental conditions on the microbial kinetics for design and modeling of biological treatment processes. In this research, the kinetics of nitrate and nitrite reduction by autotrophic hydrogen-dependent denitrifying bacteria and the possible role of acetogens were studied in two sequencing batch reactors (SBR) under varying pH and temperature conditions. A zero order kinetic model was proposed for nitrate and nitrite reduction and kinetic coefficients were obtained at two temperatures (25 +/- 1 and 12 +/- 1 degrees C), and pH ranging from 7 to 9.5. Nitrate and nitrite reduction was inhibited at pH of 7 at both temperatures of 12 +/- 1 and 25 +/- 1 degrees C. The optimum pH conditions for nitrate and nitrite reduction were 9.5 at 25 +/- 1 degrees C and 8.5 at 12 +/- 1 degrees C. Nitrate and nitrite reduction rates were compared, when they were used separately as the sole electron acceptor. It was shown that nitrite reduction rates consistently exceeded nitrate reduction rates, regardless of temperature and pH. The observed transitional accumulation of nitrite, when nitrate was used as an electron acceptor, indicated that nitrite reduction was slowed down by the presence of nitrate. No activity of acetogenic bacteria was observed in the hydrogenotrophic biomass and no residual acetate was detected, verifying that the kinetic parameters obtained were not influenced by heterotrophic denitrification and accurately represented autotrophic activity.  相似文献   

6.
In a batch culture experiment the microaerophilic Campylobacter-like bacterium “Spirillum” 5175 derived its energy for growth from the reduction of nitrate to nitrite and nitrite to ammonia. Hereby, formate served as electron donor, acetate as carbon source, and l-cysteine as sulfur source. Nitrite was quantitatively accumulated in the medium during the reduction of nitrate; reduction of nitrite began only after nitrate was exhausted from the medium. The molar growth yield per mol formate consumed, Ym, was 2.4g/mol for the reduction of nitrate to nitrite and 2.0 g/mol for the conversion of nitrite to ammonia. The gain of ATP per mol of oxidized formate was 20% higher for the reduction of nitrate to nitrite, compared to the reduction of nitrite to ammonia. With succinate as carbon source and nitrite as electron acceptor, Ym was 3.2g/mol formate, i.e. 60% higher than with acetate as carbon source. No significant amount of nitrous oxide or dinitrogen was produced during growth with nitrate or nitrite both in the presence or absence of acetylene. No growth on nitrous oxide was found. The hexaheme c nitrite reductase of “Spirillum” 5175 was an inducible enzyme. It was present in cells cultivated with nitrate or nitrite as electron acceptor. It was absent in cells grown with fumarate, but appeared in high concentration in “Spirillum” 5175 grown on elemental sulfur. Furthermore, the dissimilatory enzymes nitrate reductase and hexaheme c nitrite reductase were localized in the periplasmic part of the cytoplasmic membrane.  相似文献   

7.
Abstract: A total of 28 nitrate-reducing bacteria were isolated from marine sediment (Mediterranean coast of France) in which dissimilatory reduction of nitrate to ammonium (DRNA) was estimated as 80% of the overall nitrate consumption. Thirteen isolates were considered as denitrifiers and ten as dissimilatory ammonium producers. 15N ammonium production from 15N nitrate by an Enterobacter sp. and a Vibrio sp., the predominant bacteria involved in nitrate ammonification in marine sediment, was characterized in pure culture studies. For both strains studied, nitrate-limited culture (1 mM) produced ammonium as the main product of nitrate reduction (> 90%) while in the presence of 10 mM nitrate, nitrite was accumulated in the spent media and ammonia production was less efficient. Concomitantly with the dissimilation of nitrate to nitrite and ammonium the molar yield of growth on glucose increased. Metabolic products of glucose were investigated under different growth conditions. Under anaerobic conditions without nitrate, ethanol was formed as the main product; in the presence of nitrate, ethanol disappeared and acetate increased concomitantly with an increased amount of ammonium. These results indicate that nitrite reduction to ammonium allows NAD regeneration and ATP synthesis through acetate formation, instead of ethanol formation which was favoured in the absence of nitrate.  相似文献   

8.
Granular sludge from an upflow anaerobic sludge blanket reactor treating synthetic waste water containing a mixture of volatile fatty acids and nitrate showed a removal efficiency of nearly 100% for both nitrogen and carbon. This activity was achieved by a combined process of denitrification and methanogenesis under conditions of surplus carbon. Under batch conditions the two processes proceeded clearly separated in time with first denitrification dominating and excluding methanogenesis. However, as soon as nitrate was depleted, methane production was initiated, showing that the inhibition of methanogenesis by nitrate was reversible. Of the volatile fatty acids supplied to the reactor, i.e. acetate, propionate, and butyrate, the denitrifying population clearly preferred butyrate and propionate even though acetate could also be metabolized. Consequently, growth of syntrophic volatile fatty acid degraders was suppressed by the denitrifiers in cases of low C:N ratios in the medium, leaving acetate as the major substrate for methanogenesis.Abbreviations UASB upflow anaerobic sludge blanket - COD chemical oxygen demand - VFA volatile fatty  相似文献   

9.
The study investigated effect of high influent nitrate concentration on poly-beta-hydroxybutyrate, (PHB), storage in a sequencing batch reactor, (SBR), under anoxic conditions. Acetate was fed as pulse during anoxic phase, sustained with external nitrate feeding. SBR operation involved three runs at steady state with COD/N ratios of 3.84, 2.93 and 1.54 gCOD/gN, where external nitrate concentrations gradually increased from 50 mg N/l to 114 mg N/l and 226 mg N/l, in 1st, 2nd and 3rd runs, respectively. In 1st run, acetate was fully converted into PHB with the storage yield value of 0.57-0.59 gCOD/gCOD, calculated both in terms of PHB formation and NO(X) utilization, confirming storage was the sole substrate utilization mechanism. In the following runs, PHB formation was reduced and the storage yield based on PHB dropped down to 0.40 and 0.33 gCOD/gCOD with increasing influent nitrate concentrations, indicating that higher portions of acetate were diverted to simultaneous direct growth. The observations suggested that nitrite accumulation detected at low COD/N ratios was responsible for inhibition of PHB storage.  相似文献   

10.
A comparative study on the use of methanol as a supplementary carbon source to enhance denitrification in primary and secondary anoxic zones is reported. Three lab-scale sequencing batch reactors (SBR) were operated to achieve nitrogen and carbon removal from domestic wastewater. Methanol was added to the primary anoxic period of the first SBR, and to the secondary anoxic period of the second SBR. No methanol was added to the third SBR, which served as a control. The extent of improvement on the denitrification performance was found to be dependent on the reactor configuration. Addition to the secondary anoxic period is more effective when very low effluent nitrate levels are to be achieved and hence requires a relatively large amount of methanol. Adding a small amount of methanol to the secondary anoxic period may cause nitrite accumulation, which does not improve overall nitrogen removal. In the latter case, methanol should be added to the primary anoxic period. The addition of methanol can also improve biological phosphorus removal by creating anaerobic conditions and increasing the availability of organic carbon in wastewater for polyphosphate accumulating organisms. This potentially provides a cost-effective approach to phosphorus removal from wastewater with a low carbon content. New fluorescence in situ hybridisation (FISH) probes targeting methanol-utilising denitrifiers were designed using stable isotope probing. Microbial structure analysis of the sludges using the new and existing FISH probes clearly showed that the addition of methanol stimulated the growth of specific methanol-utilizing denitrifiers, which improved the capability of sludge to use methanol and ethanol for denitrification, but reduced its capability to use wastewater COD for denitrification. Unlike acetate, long-term application of methanol has no negative impact on the settling properties of the sludge.  相似文献   

11.
J. van Rijn  Y. Tal    Y. Barak 《Applied microbiology》1996,62(7):2615-2620
Intermediate nitrite accumulation during denitrification by Pseudomonas stutzeri isolated from a denitrifying fluidized bed reactor was examined in the presence of different volatile fatty acids. Nitrite accumulated when acetate or propionate served as the carbon and electron source but did not accumulate in the presence of butyrate, valerate, or caproate. Nitrite accumulation in the presence of acetate was caused by differences in the rates of nitrate and nitrite reduction and, in addition, by competition between nitrate and nitrite reduction pathways for electrons. Incubation of the cells with butyrate resulted in a slower nitrate reduction rate and a faster nitrite reduction rate than incubation with acetate. Whereas nitrate inhibited the nitrite reduction rate in the presence of acetate, no such inhibition was found in butyrate-supplemented cells. Cytochromes b and c were found to mediate electron transport during nitrate reduction by the cells. Cytochrome c was reduced via a different pathway when nitrite-reducing cells were incubated with acetate than when they were incubated with butyrate. Furthermore, addition of antimycin A to nitrite-reducing cells resulted in partial inhibition of electron transport to cytochrome c in acetate-supplemented cells but not in butyrate-supplemented cells. On the basis of these findings, we propose that differences in intermediate nitrite accumulation are caused by differences in electron flow to nitrate and nitrite reductases during oxidation of either acetate or butyrate.  相似文献   

12.
Dissimilatory nitrate reduction by Propionibacterium acnes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

13.
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

14.
The United States Marine Shrimp Farming Program (USMSFP) introduced a new technology for shrimp farming called recirculating raceway system. This is a zero-water exchange system capable of producing high-density shrimp yields. However, this system produces wastewater characterized by high levels of ammonia, nitrite, and nitrate due to 40% protein diet for the shrimp at a high density of 1,000 shrimp per square meter. The high concentrations of nitrate and nitrite (greater than 25 ppm) are toxic to shrimp and cause high mortality. So treatment of this wastewater is imperative in order to make shrimp farming viable. One simple method of treating high-nitrogen wastewater is the use of a sequencing batch reactor (SBR). An SBR is a variation of the activated sludge process, which accomplishes many treatment events in a single reactor. Removal of ammonia and nitrate involved nitrification and denitrification reactions by operating the SBR aerobically and anaerobically in sequence. Initial SBR operation successfully removed ammonia, but nitrate concentrations were too high because of carbon limitation in the shrimp production wastewater. An optimization study revealed the optimum carbon to nitrogen (C:N) ratio of 10:1 for successful removal of all nitrogen species from the wastewater. The SBR operated with a C:N ratio of 10:1 with the addition of molasses as carbon source successfully removed 99% of ammonia, nitrate, and nitrite from the shrimp aquaculture wastewater within 9 days of operation.  相似文献   

15.
Sulfurospirillum deleyianum grew in batch culture under anoxic conditions with sulfide (up to 5 mM) as electron donor, nitrate as electron acceptor, and acetate as carbon source. Nitrate was reduced to ammonia via nitrite, a quantitatively liberated intermediate. Four moles of sulfide were oxidized to elemental sulfur per mole nitrate converted to ammonia. The molar growth yield per mole sulfide consumed, Ym, was 1.5 ± 0.2 g mol–1 for the reduction of nitrate to ammonia. By this type of metabolism, S. deleyianum connected the biogeochemical cycles of sulfur and nitrogen. The sulfur reductase activity in S. deleyianum was inducible, as the activity depended on the presence of sulfide or elemental sulfur during cultivation with nitrate or fumarate as electron acceptor. Hydrogenase activity was always high, indicating that the enzyme is constitutively expressed. The ammonia-forming nitrite reductase was an inducible enzyme, expressed when cells were cultivated with nitrate, nitrite, or elemental sulfur, but repressed after cultivation with fumarate. Received: 13 March 1995 / Accepted: 29 May 1995  相似文献   

16.
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosomonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO2 were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14-0.16 mgN mgCOD(biomass)(-1)h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH 7.  相似文献   

17.
Abstract Nitrate reduction to ammonia by marine Vibrio species was studied in batch and continuous culture. In pH-controlled batch cultures (pH 7.4; 50 mM glucose, 20 mM KNO3), the nitrate consumed accumulated to more than 90% as nitrite. Under these conditions, the nitrite reductase (NO2→ NH3) was severely repressed. In pH-controlled continuous cultures of V. alginolyticus with glucose or glycerol as substrates ( D = 0.045 h−1) and limiting N-source (nitrate or nitrite), nitrite reductase was significantly derepressed with cellular activities in the range of 0.7–1.2 μmol min−1 (mg protein)−1. The enzyme was purified close to electrophoretic homogeneity with catalytic activity concentrations of about 1800 nkat/mg protein. It catalyzed the reduction of nitrite to ammonia with dithionite-reduced viologen dyes or flavins as electron donors, had an M r of about 50 000 (determined by gel filtration) and contained c-type heme groups (probably 4–6 per molecule).  相似文献   

18.
Nitroexplosives are essential for security and defense of the nation and hence their production continues. Their residues and transformed products, released in the environment are toxic to both terrestrial and aquatic life. This necessitates remediation of wastewaters containing such hazardous chemicals to reduce threat to human health and environment. Bioremediation technologies using microorganisms become the present day choice. High Melting Explosive (HMX) is one of the nitroexplosives produced by nitration of hexamine using ammonium nitrate and acetic anhydride and hence the wastewater bears high concentration of nitrate and acetate. The present investigation describes potential of a soil isolate of yeast Pichia sydowiorum MCM Y-3, for remediation of HMX wastewater in fixed film bioreactor (FFBR). The flask culture studies showed appreciable growth of the organism in HMX wastewater under shake culture condition within 5–6 days of incubation at ambient temperature (28 ± 2°C). The FFBR process operated in both batch and continuous mode, with Hydraulic Retention Time (HRT) of 1 week resulted in 50–55% removal in nitrate, 70–88% in acetate, 50–66% in COD, and 28–50% in HMX content. Continuous operation of the reactor showed better removal of nitrate as compared to that in the batch operation, while removal of acetate and COD was comparable in both the modes of operation of the reactor. Insertion of baffles in the reactor increased efficiency of the reactor. Thus, FFBR developed with baffles and operated in continuous mode will be beneficial for bioremediation of high nitrate and acetate containing wastewater using the culture of P. sydowiorum.  相似文献   

19.
A free-living aspartate-fermenting Campylobacter spec. was shown to utilize hydrogen produced in mixed culture by Clostridium cochlearium from glutamate. Resting cells of Campylobacter were shown to reduce aspartate, fumarate and malate as well as nitrate, nitrite, hydroxylamine, sulphite, thiosulphate and elemental sulphur with molecular hydrogen. Growth of Campylobacter spec. was demonstrated with formate as electron donor and nitrate, thiosulphate, elemental sulphur or oxygen as electron acceptor in the presence of acetate as carbon source.  相似文献   

20.
Sulfur-utilizing autotrophic denitrification relies on an inorganic carbon source to reduce the nitrate by producing sulfuric acid as an end product and can be used for the treatment of wastewaters containing high levels of nitrates. In this study, sulfur-denitrifying bacteria were used in anoxic batch tests with sulfur as the electron donor and nitrate as the electron acceptor. Various medium components were tested under different conditions. Sulfur denitrification can drop the medium pH by producing acid, thus stopping the process half way. To control this mechanism, a 2:1 ratio of sulfur to oyster shell powder was used. Oyster shell powder addition to a sulfurdenitrifying reactor completely removed the nitrate. Using 50, 100, and 200 g of sulfur particles, reaction rate constants of 5.33, 6.29, and 7.96 mg(1/2)/l(1/2)·h were obtained, respectively; and using 200 g of sulfur particles showed the highest nitrate removal rates. For different sulfur particle sizes ranging from small (0.85-2.0 mm), medium (2.0-4.0 mm), and large (4.0-4.75 mm), reaction rate constants of 31.56, 10.88, and 6.23 mg(1/2)/l(1/2)·h were calculated. The fastest nitrate removal rate was observed for the smallest particle size. Addition of chemical oxygen demand (COD), methanol as the external carbon source, with the autotrophic denitrification in sufficiently alkaline conditions, created a balance between heterotrophic denitrification (which raises the pH) and sulfur-utilizing autotrophic denitrification, which lowers the pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号