首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effective elimination of phycobiliproteins from crude enzyme preparation of the red alga Caloglossa continua (Okamura) King et Puttock (Ceramiales, Florideophyceae) was investigated in an aqueous two‐phase partitioning system (ATPS) by changing the concentrations of polyethylene glycol (PEG) and ammonium sulfate (AS). The phycobiliproteins shifted from the AS‐rich lower phase to the PEG‐rich upper phase in high PEG and AS concentrations. The best ATPS condition for the elimination of phycobiliproteins from the lower phase was obtained by the combination of 20% (weight/volume; w/v) PEG and 16% (w/v) AS. However, the recovery of aldolase and mannitol‐1‐phos‐phatase activities was significantly reduced. For purification of the enzymes, a combination of 15% (w/v) PEG and 16% (w/v) AS was the best ATPS condition, because a high specific activity and recovery of the enzymes were obtained. Under these conditions, 98% of the phycobiliproteins were removed from the lower phase. Therefore, the ATPS proved to be a very useful method as a first step in the purification of enzymes from red algae.  相似文献   

2.
Optimisation of aqueous two-phase extraction of human antibodies   总被引:1,自引:0,他引:1  
The purification of human antibodies in an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) 6000 and phosphate was optimised by surface response methodology. A central composite design was used to evaluate the influence of phosphate, PEG and NaCl concentration and of the pH on the purity and extraction yield of IgG from a simulated serum medium. The conditions that maximise the partition of IgG into the upper phase were determined to be high concentrations of NaCl and PEG, low concentrations of phosphate and low pH values. An ATPS composed of 12% PEG, 10% phosphate, 15% NaCl at pH 6 was further used to purify human monoclonal antibodies from a Chinese Hamster Ovary (CHO) concentrated cell culture supernatant with a recovery yield of 88% in the upper PEG-rich phase and a purification factor of 4.3. This ATPS was also successfully used to purify antibodies from a hybridoma cell culture supernatant with a recovery yield of 90% and a purification factor of 4.1.  相似文献   

3.
Aqueous two-phase systems (ATPS) are considered as efficient downstream processing techniques in the production and purification of enzymes, since they can be considered harmless to biomolecules due to their high water content and due to the possibility of maintaining a neutral pH value in the medium. A recent type of alternative ATPS is based on hydrophilic ionic liquids (ILs) and salting-out inducing salts. The aim of this work was to study the lipase (Candida antarctica lipase B - CaLB) partitioning in several ATPS composed of ionic liquids (ILs) and inorganic salts, and to identify the best IL for the enzyme purification. For that purpose a wide range of IL cations and anions, and some of their combinations were studied. For each system the enzyme partitioning between the two phases was measured and the purification factors and enzyme recoveries were determined. The results indicate that the lipase maximum purification and recovery were obtained for cations with a C(8) side alkyl chain, the [N(CN)(2)] anion and ILs belonging to the pyridinium family. However, the highest purification parameters were observed for 1-methyl-3-octylimidazolium chloride [C(8)mim]Cl, suggesting that the IL extraction capability does not result from a cumulative character of the individual characteristics of ILs. The results indicate that the IL based ATPS have an improved performance in the lipase purification and recovery.  相似文献   

4.
The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the “green aspect” of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.  相似文献   

5.
The agarases were purified for the first time an using aqueous two-phase system (ATPS) consisting of polyethylene glycol (PEG) and phosphate salt. The three extracellular, alkaline agarases produced by Pseudomonas aeruginosa AG LSL-11 were efficiently extracted into the top PEG-rich layer. The influencing factors on the partition of agarases—molecular weight of the PEG, system pH, system temperature, and NaCl concentration—were investigated. All the factors were found to have a significant effect on the partition of agarases except NaCl. The optimal ATPS parameters for the partitioning and purification of agarases were found to be 12% PEG 600 and 11.9% (w/w) phosphate salt at pH 8.0 and 4°C. All three agarases were concentrated in the top PEG phase with 6.19-fold purity and 71.21% recovery. The ATPS was found to be more convenient and economical than the conventional ion-exchange chromatography (IEC) method for extraction of three agarases and could be significantly employed for the purification of agarases from fermentation broth.  相似文献   

6.
The agarases were purified for the first time an using aqueous two-phase system (ATPS) consisting of polyethylene glycol (PEG) and phosphate salt. The three extracellular, alkaline agarases produced by Pseudomonas aeruginosa AG LSL-11 were efficiently extracted into the top PEG-rich layer. The influencing factors on the partition of agarases--molecular weight of the PEG, system pH, system temperature, and NaCl concentration--were investigated. All the factors were found to have a significant effect on the partition of agarases except NaCl. The optimal ATPS parameters for the partitioning and purification of agarases were found to be 12% PEG 600 and 11.9% (w/w) phosphate salt at pH 8.0 and 4°C. All three agarases were concentrated in the top PEG phase with 6.19-fold purity and 71.21% recovery. The ATPS was found to be more convenient and economical than the conventional ion-exchange chromatography (IEC) method for extraction of three agarases and could be significantly employed for the purification of agarases from fermentation broth.  相似文献   

7.
Superoxide dismutase (SOD; EC 1.15.1.1) is an antioxidant enzyme that represents the primary cellular defense against superoxide radicals and has interesting applications in the medical and cosmetic industries. In the present work, the partition behavior of SOD in aqueous two‐phase systems (ATPS) (using a standard solution and a complex extract from Kluyveromyces marxianus as sample) was characterized on different types of ATPS (polymer–polymer, polymer–salt, alcohol–salt, and ionic liquid (IL)–salt). The systems composed of PEG 3350‐potassium phosphate, 45% TLL, 0.5 M NaCl (315 U/mg, 87% recovery, and 15.1‐fold purification) and t‐butanol‐20% ammonium sulfate (205.8 U/mg, 80% recovery and 9.8‐fold purification), coupled with a subsequent 100 kDa ultrafiltration stage, allowed the design of a prototype process for the recovery and partial purification of the product of interest. The findings reported herein demonstrate the potential of PEG‐salt ATPS for the potential recovery of SOD. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1326–1334, 2014  相似文献   

8.
A new type of aqueous two-phase system (ATPS) has been developed for application combining two attractive concepts in downstream processing: the immobilised metal affinity partitioning and the use of thermoprecipitating polymers. ATPS consisting of the thermoprecipitating copolymer of N-vinyl caprolactam/1-vinyl imidazole loaded with Cu ions (Cu-poly-VI-VCL) in the top phase and dextran T70 in the bottom phase was used for purification of recombinant lactate dehydrogenase carrying an affinity tag of 6 histidine residues (His-LDH ) from a crude E. coli extract. The enzyme partitioned preferentially into the top Cu-poly-VI-VCL-rich phase. After phase separation, the latter was mixed with EDTA. Temperature increase to 45°C resulted in thermoprecipitation of VCL/VI-polymer, which could subsequently be recycled. His-LDH remained solubilized in the aqueous phase resulting in 8-fold purification and 80 % recovery in a single step.  相似文献   

9.
Potato peel from food industrial waste is a good source of polyphenol oxidase (PPO). This work illustrates the application of an aqueous two-phase system (ATPS) for the extraction and purification of PPO from potato peel. ATPS was composed of polyethylene glycol (PEG) and potassium phosphate buffer. Effect of different process parameters, namely, PEG, potassium phosphate buffer, NaCl concentration, and pH of the system, on partition coefficient, purification factor, and yield of PPO enzyme were evaluated. Response surface methodology (RSM) was utilized as a statistical tool for the optimization of ATPS. Optimized experimental conditions were found to be PEG1500 17.62% (w/w), potassium phosphate buffer 15.11% (w/w), and NaCl 2.08 mM at pH 7. At optimized condition, maximum partition coefficient, purification factor, and yield were found to be 3.7, 4.5, and 77.8%, respectively. After partial purification of PPO from ATPS, further purification was done by gel chromatography where its purity was increased up to 12.6-fold. The purified PPO enzyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Km value 3.3 mM, and Vmax value 3333 U/mL, and enzyme stable ranges for temperature and pH of PPO were determined. These results revealed that ATPS would be an attractive option for obtaining purified PPO from waste potato peel.  相似文献   

10.
Nowadays, there is an increasing demand to establish new feasible, efficient downstream processing (DSP) techniques in biotechnology and related fields. Although several conventional DSP technologies have been widely employed, they are usually expensive and time-consuming and often provide only low recovery yields. Hence, the DSP is one major bottleneck for the commercialization of biological products. In this context, polyethylene glycol (PEG)–salt aqueous two-phase systems (ATPS) represent a promising, efficient liquid–liquid extraction technology for the DSP of various biomolecules, such as proteins and enzymes. Furthermore, ATPS can overcome the limitations of traditional DSP techniques and have gained importance for applications in several fields of biotechnology due to versatile advantages over conventional DSP methods, such as biocompatibility, technical simplicity, and easy scale-up potential. In the present review, various practical applications of PEG–salt ATPS are presented to highlight their feasibility to operate as an attractive and versatile liquid–liquid extraction technology for the DSP of proteins and enzymes, thus facilitating the approach of new researchers to this technique. Thereby, single- and multi-stage extraction, several process integration methods, as well as large-scale extraction and purification of proteins regarding technical aspects, scale-up, recycling of process chemicals, and economic aspects are discussed.  相似文献   

11.
In this article, we describe a characterization method applicable to aqueous two-phase systems (ATPS) heavily loaded with complex biological feed-stocks. We also studied the partition behavior of mixtures of traceable and quantifiable radiolabeled amino acids, selected on the basis of their relative hydrophobicity A unique linear relation was established between the tie-line length (TLL: commonly determined by graphical methods) and the hydrophobic factor (HF) for ATPS comprising potassium phosphate and PEG alone, and validated for polymer molecular weights from 300 to 8000 Da in systems operated at an apparent pH value of 7.5. Radiolabeled amino acids were subsequently applied to the characterization of ATPS loaded with whole bovine blood by the determination of effective tie-line lengths (TLL(e)). The addition of biomass to ATPS increased TLL(e) relative to that of blank ATPS of equivalent original composition of PEG and phosphate. In addition, an increase of biomass loading (variously sourced from blood, yeast, and E. coli) contributed to phase formation and stabilization of loaded ATPS in respect of system sensitivity toward operational conditions. The controlled application of sensitive ATPS (adjacent to the binodal curve) could thus be reconsidered for further application of aqueous two-phase partitioning as a primary purification process. The application of effective tie-line determinations by distribution analysis of radiolabeled analytes (DARA) as a process-aid in the design and operation of ATPS in biorecovery is discussed.  相似文献   

12.
Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low‐cost purification by surfactant‐based aqueous two‐phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY‐2) suspension cell platform and the establishment of pilot‐scale propagation and downstream processing including first‐step purification by ATPS. Green fluorescent protein‐hydrophobin fusion (GFP‐HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY‐2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP‐HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large‐scale hydrophobin‐assisted production of recombinant proteins in tobacco BY‐2 cell suspensions.  相似文献   

13.
In this paper we explore an alternative process for the purification of human antibodies from a Chinese hamster ovary (CHO) cell supernatant comprising a ligand-enhanced extraction capture step and cation exchange chromatography (CEX). The extraction of human antibodies was performed in an aqueous two-phase system (ATPS) composed of dextran and polyethylene glycol (PEG), in which the terminal hydroxyl groups of the PEG molecule were modified with an amino acid mimetic ligand in order to enhance the partition of the antibodies to the PEG-rich phase. This capture step was optimized using a design of experiments and a central composite design allowed the determination of the conditions that favor the partition of the antibodies to the phase containing the PEG diglutaric acid (PEG-GA) polymer, in terms of system composition. Accordingly, higher recovery yields were obtained for higher concentrations of PEG-GA and lower concentrations of dextran. The highest yield experimentally obtained was observed for an ATPS composed of 5.17% (w/w) dextran and 8% (w/w) PEG-GA. Higher purities were however predicted for higher concentrations of both polymers. A compromise between yield and purity was achieved using 5% dextran and 10% PEG-GA, which allowed the recovery of 82% of the antibodies with a protein purity of 96% and a total purity of 63%, determined by size-exclusion chromatography. ATPS top phases were further purified by cation exchange chromatography and it was observed that the most adequate cation exchange ligand was carboxymethyl, as the sulfopropyl ligand induced the formation of multi-aggregates or denatured forms. This column allowed the elution of 89% of the antibodies present in the top phase, with a protein purity of 100% and a total purity of 91%. The overall process containing a ligand-enhanced extraction step and a cation exchange chromatography step had an overall yield of 73%.  相似文献   

14.
A new type of polymer, starch-modified by acrylamide, has been developed for application in aqueous two-phase systems (ATPS) for protein separation. Partial hydrolysis and acrylamide modification of starch to different degrees make it suitable for forming ATPS with poly(ethylene glycol) in a moderate concentration range. The potential of the polymer to form ATPS with the thermoprecipitating copolymer of 1-vinylimidazole with N-vinylcaprolactam (poly-VI/VCL) has been evaluated. The thermoprecipitation properties of poly-VI/VCL and Cu(II)-loaded poly-VI/VCL have been studied for application in metal affinity partitioning. The formation of ATPS with Cu(II)-loaded thermoprecipitating copolymer was critically achieved for poly-VI/VCL (10/90) copolymer in under-loaded metal concentrations. With the Cu(II)-loaded copolymer, poly-VI/VCL in the top phase and modified starch in the bottom phase, the ATPS formed was used for the purification of alpha-amylase inhibitor from wheat meal. The protein partitioned in the top phase and phase-separated polymer-protein complex could be precipitated by salt. The protein inhibitor was recovered with a yield of 75%.  相似文献   

15.
A process for the primary recovery of B-phycoerythrin from Porphyridium cruentum exploiting aqueous two-phase systems (ATPS) was developed in order to reduce the number of unit operations and benefit from an increased yield of the protein product. The evaluation of system parameters such as poly(ethylene glycol) (PEG) molecular mass, concentration of PEG as well as salt, system pH and volume ratio was carried out to determine under which conditions the B-phycoerythrin and contaminants concentrate to opposite phases. PEG 1450-phosphate ATPS proved to be suitable for the recovery of B-phycoerythrin because the target protein concentrated to the top phase whilst the protein contaminants and cell debris concentrated in the bottom phase. An extraction ATPS stage comprising volume ratio (Vr) equal to 1.0, PEG 1450 24.9% (w/w), phosphate 12.6% (w/w) and system pH of 8.0 allowed B-phycoerythrin recovery with a purity of 2.9 (estimated as the relation of the 545-280 nm absorbances). The use of ATPS resulted in a primary recovery process that produced a protein purity of 2.9 +/- 0.2 and an overall product yield of 77.0% (w/w). The results reported demonstrated the practical implementation of ATPS for the design of a primary recovery process as a first step for the commercial purification of B-phycoerythrin produced by P. cruentum.  相似文献   

16.
An alcohol/salt aqueous two-phase system (ATPS) composed of 1-propanol and (NH4)2SO4 was employed to purify anthraquinones (AQs) extracted from Aloe vera L. The main influencing system parameters such as type of alcohol, type and concentration of salt, temperature and pH were investigated in detail. Under the optimal extraction conditions, AQs can be extracted into alcohol-rich phase with high extraction efficiency, meanwhile majority polysaccharides, proteins, mineral substances and other impurities were extracted into salt-rich phase. Partitioning of AQs is dependent on hydrophobic interaction, hydrogen bond interaction, and salting-out effect in ATPS. Temperature also played a great role in the partitioning. After ATPS extraction, alcohol can be recycled by evaporation; moreover, salt can be recycled by dilution crystallization method. Compared with other liquid–liquid extractions, this alcohol/salt system is much simpler, lower in cost with easier recovery of phase-forming components, which has the potential scale-up in down-processing of active ingredients in plant.  相似文献   

17.
The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio and a moderate tie-line length, which implies the possibility of concentration operation using aqueous two phase partitioning. An ion-exchange separation of high purification efficiency was applied to analyze the clarified and dialyzed fermentation broth. A total purification factor of only 2.3 was obtained, which indicated the high enzyme protein content in the total protein of the fermentation broth. Consequently, the main purpose for separating endo-PG is concentration rather than purification. A separation scheme using an aqueous two-phase extraction process with polymer recycling and a dialysis was proposed to recover endo-PG from the fermentation supernatant of K. marxianus for commercial purpose. A high enzyme recovery up to 95% and a concentration factor of 5 to 8 with a purification factor of about 1.25 were obtained using the single aqueous two-phase extraction process. More than 95% polymer recycled will not affect the enzyme recovery and purification factor. Dialysis was used mainly to remove salts in the bottom phase. The dialysis step has no enzyme loss and can further remove small bulk proteins. The total purification factor for the scheme is about 1.7.  相似文献   

18.
The crude intracellular lipase (cell homogenate) from Trichosporon laibacchii was subjected to partial purification by aqueous two-phase system (ATPS) and then in situ immobilization by directly adding diatomites as carrier to the top PEG-rich phase of ATPS. A partition study of lipase in the ATPS formed by polyethylene glycol–potassium phosphate has been performed. The influence of system parameters such as molecular weight of PEG, system phase composition and system pH on the partitioning behaviour of lipase was evaluated. The ATPS consisting of PEG 4000 (12%) and potassium phosphate (K2HPO4, 13%) resulted in partition of lipase to the PEG-rich phase with partition coefficient 7.61, activity recovery 80.4%, and purification factor of 5.84 at pH of 7.0 and 2.0% NaCl. Moreover, the in situ immobilization of lipase in PEG phase resulted in a highest immobilized lipase activity of 1114.6 U g?1. The above results show that this novel lipase immobilization procedure which couples ATPS extract and enzyme immobilization is cost-effective as well as time-saving. It could be potentially useful technique for the purification and immobilization of lipase.  相似文献   

19.
Aqueous two-phase partition systems (ATPS) have been widely used for the separation of a large variety of biomolecules. In the present report, the application of a polyethylene glycol/phosphate (PEG/phosphate) ATPS for the separation of anti-HIV monoclonal antibodies 2G12 (mAb 2G12) and 4E10 (mAb 4E10) from unclarified transgenic tobacco crude extract was investigated. Optimal conditions that favor opposite phase partitioning of plant debris/mAb as well as high recovery and purification were found to be 13.1% w/w (PEG 1500), 12.5% w/w (phosphate) at pH 5 with a phase ratio of 1.3 and 8.25% w/w unclarified tobacco extract load. Under these conditions, mAb 2G12 and mAb 4E10 were partitioned at the bottom phosphate phase with 85 and 84% yield and 2.4- and 2.1-fold purification, respectively. The proposed ATPS was successfully integrated in an affinity-based purification protocol, using Protein A, yielding antibodies of high purity and yield. In this study, ATPS was shown to be suitable for initial protein recovery and partial purification of mAb from unclarified transgenic tobacco crude extract.  相似文献   

20.
Recent technical advances in aqueous two-phase systems (ATPS) have made this a sound technique for the extraction of biomacromolecules. The extraction of alpha-amylase was investigated using aqueous two-phase systems formed by sodium sulphate-polyethylene glycol (PEG) in water in a 47-mm inner diameter spray column packed with three types of static mixers. The effects of dispersed-phase flow rate, phase composition, column height and diameter were studied. The extraction column was operated in a semi-batch manner. It was found that the hold-up and volumetric mass transfer coefficients increased with an increase in dispersed (PEG-rich) phase velocity and decreased with increasing phase composition. Empirical correlations were developed for fractional dispersed-phase hold-up and volumetric mass transfer coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号