首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxorubicin (adriamycin) is a highly effective cancer chemotherapeutic drug but its clinical utility is limited by its cardiotoxicity. Doxorubicinol, the major metabolite of doxorubicin, is up to 10 times more potent than doxorubicin at inhibiting isometric contraction of the papillary muscle isolated from the right ventricle of rabbit heart. Doxorubicinol also increases resting tension of isolated cardiac muscle indicative of incomplete relaxation between contractions, a characteristic of doxorubicinol but not of doxorubicin. This study assesses the effect(s) of doxorubicinol on a variety of ion pumps which may explain, in part, the action of the metabolite in the intact muscle. We find the doxorubicinol is a potent inhibitor (IC50 less than 5 micrograms/ml) of calcium-stimulated ATPase activity of sarcoplasmic reticulum from canine heart and rabbit skeletal muscle. At comparable levels, doxorubicinol is also a potent inhibitor of (Na + K)-ATPase of cardiac sarcolemma and the Mg-dependent ATPase activity referable to the F0F1 proton pump of mitochondria. For each of these ion pumps, doxorubicinol is at least 80 times more potent an inhibitor than doxorubicin. Doxorubicinol, between 10 and 50 micrograms/ml, increases resting tension up to 4-fold in isolated papillary muscles cyclically contracting at 30 times/min. Resting stress is relatively insensitive to doxorubicin. Thus, doxorubicinol is a potent inhibitor of several key cationic pumps that directly or indirectly regulate cell calcium and inhibits relaxation in the isolated fiber preparation. These observations add a new dimension to understanding the cardiotoxicity of doxorubicin.  相似文献   

2.
Specific targeting of tumor cells to achieve higher drug levels in tumor tissue and to overcome cardiotoxic and other secondary effects is the major goal in cancer therapy. With trastuzumab as a humanized monoclonal antibody binding, the HER2 receptor specific targeting is possible. In the present study, target-oriented nanoparticles based on biodegradable human serum albumin (HSA) loaded with cytostatic drug doxorubicin were developed. The surface of the nanoparticles was modified by covalent attachment of trastuzumab. HER2 overexpressing breast cancer cells showed a good cellular binding and uptake of these nanoparticles. The specific transport of the cytostatic drug doxorubicin with this nanoparticulate formulation into the HER2 overexpressing breast cancer cells, their release, and biological activity was demonstrated. The results indicate that these cell-type specific drug-loaded nanoparticles could achieve an improvement in cancer therapy. To our knowledge, this is the first study demonstrating a specific trastuzumab-based targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded nanoparticles.  相似文献   

3.
High glucosylceramide synthase (GCS) activity is one factor contributing to multidrug resistance (MDR) in breast cancer. Enforced GCS overexpression has been shown to disrupt ceramide-induced apoptosis and to confer resistance to doxorubicin. To examine whether GCS is a target for cancer therapy, we have designed and tested the effects of antisense oligodeoxyribonucleotides (ODNs) to GCS on gene expression and chemosensitivity in multidrug-resistant cancer cells. Here, we demonstrate that antisense GCS (asGCS) ODN-7 blocked cellular GCS expression and selectively increased the cytotoxicity of anticancer agents. Pretreatment with asGCS ODN-7 increased doxorubicin sensitivity by 17-fold in MCF-7-AdrR (doxorubicin-resistant) breast cancer cells and by 10-fold in A2780-AD (doxorubicin-resistant) ovarian cancer cells. In MCF-7 drug-sensitive breast cancer cells, asGCS ODN-7 only increased doxorubicin sensitivity by 3-fold, and it did not influence doxorubicin cytotoxicity in normal human mammary epithelial cells. asGCS ODN-7 was shown to be more efficient in reversing drug resistance than either the GCS chemical inhibitor d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol or the P-glycoprotein blocking agents verapamil and cyclosporin A. Experiments defining drug transport and lipid metabolism parameters showed that asGCS ODN-7 overcomes drug resistance mainly by enhancing drug uptake and ceramide-induced apoptosis. This study demonstrates that a 20-mer asGCS oligonucleotide effectively reverses MDR in human cancer cells.  相似文献   

4.
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting key signaling molecules. Ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to EGFR, Bcl-2 and calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC50 was frequently observed. An exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/DoxR cells were examined in these experiments as a control drug-resistant line; it displayed increased sensitivity to EGFR and Bcl-2 inhibitors compared with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or have become drug-resistant may display altered responses to certain small-molecule inhibitors.  相似文献   

5.
Neuroblastoma (NB) and Ewing's sarcoma (ES) represent the most common extracranial solid tumors of childhood. Heat shock proteins (HSP) are elevated in cancer cells and their over-expression was correlated to drug-resistance. In this work we identified the HSP by a sensitive proteomic analysis of NB and ES cell lines, then, we studied the HSP response to doxorubicin. Some identified HSP were constitutively more expressed in NB than in ES cells. Doxorubicin-stimulated HSP response only in NB cells. Quercetin was found to inhibit HSP expression depleting heat shock factor 1 (HSF1) cellular stores. Quercetin caused a higher anti-proliferative effect in NB (IC50: 6.9 ± 5.8 μmol/L) than in ES cells (IC50: 85.5 ± 53.1 μmol/L). Moreover, quercetin caused a very pronounced doxorubicin sensitizing effect in NB cells (241 fold IC50 decrease) and a moderate effect in ES cells. HSP involvement in NB cells sensitization was confirmed by the silencing of HSF1. Quercetin treatment and HSF1 silencing increased the pro-apoptotic effect of doxorubicin. In conclusion, the higher HSP levels, observed in NB cells, did not confer increased resistance to doxorubicin; on the contrary, HSP inhibition by quercetin or gene silencing caused higher sensitization to doxorubicin. These results may have a potential application in the treatment of NB.  相似文献   

6.
7.
The recent molecular identification of two thiamine transporters, SLC19A2 (THTR1) and SLC19A3 (THTR2), has provided the opportunity to study thiamine transporter gene expression in human malignancies. We compared RNA levels of both THTR1 and THTR2 in a panel of human breast tumors and corresponding normal tissues. THTR2 RNA levels were down-regulated in breast cancer to 14% of the level found in corresponding normal tissues, while THTR1 levels were unchanged. Both thiamine transport genes were cloned and expressed in a breast cancer cell line to examine the impact of reconstituted thiamine transport gene expression on drug and radiation sensitivity and on resistance to apoptosis. THTR2-transfected breast cancer cells showed a 2.5-fold increase in specific THTR2 activity and a 3-fold increase in cytotoxicity against a bromoacetyl ester derivative of thiamine. Surprisingly, these cells also showed a 3-fold increase in sensitivity to doxorubicin and an increase in sensitivity to ionizing radiation, but no change in sensitivity to methotrexate or paclitaxel. TUNEL assays demonstrate an increase in apoptosis in THTR2-transfected cells exposed to doxorubicin and radiation, and Western blot analysis suggests that apoptosis associated with these cytotoxic stresses is mediated at least in part by a caspase-3-dependent pathway. Therefore, thiamine transporter THTR2 gene expression is down-regulated in breast cancer, which may contribute to resistance to apoptosis in these tumors.  相似文献   

8.

Background

Recent studies suggested that induction of epithelial-mesenchymal transition (EMT) might confer both metastatic and self-renewal properties to breast tumor cells resulting in drug resistance and tumor recurrence. TGFβ is a potent inducer of EMT and has been shown to promote tumor progression in various breast cancer cell and animal models.

Principal Findings

We report that chemotherapeutic drug doxorubicin activates TGFβ signaling in human and murine breast cancer cells. Doxorubicin induced EMT, promoted invasion and enhanced generation of cells with stem cell phenotype in murine 4T1 breast cancer cells in vitro, which were significantly inhibited by a TGFβ type I receptor kinase inhibitor (TβRI-KI). We investigated the potential synergistic anti-tumor activity of TβR1-KI in combination with doxorubicin in animal models of metastatic breast cancer. Combination of Doxorubicin and TβRI-KI enhanced the efficacy of doxorubicin in reducing tumor growth and lung metastasis in the 4T1 orthotopic xenograft model in comparison to single treatments. Doxorubicin treatment alone enhanced metastasis to lung in the human breast cancer MDA-MB-231 orthotopic xenograft model and metastasis to bone in the 4T1 orthotopic xenograft model, which was significantly blocked when TβR1-KI was administered in combination with doxorubicin.

Conclusions

These observations suggest that the adverse activation of TGFβ pathway by chemotherapeutics in the cancer cells together with elevated TGFβ levels in tumor microenvironment may lead to EMT and generation of cancer stem cells resulting in the resistance to the chemotherapy. Our results indicate that the combination treatment of doxorubicin with a TGFβ inhibitor has the potential to reduce the dose and consequently the toxic side-effects of doxorubicin, and improve its efficacy in the inhibition of breast cancer growth and metastasis.  相似文献   

9.
研究了虫草素联合阿霉素在体外抑制三阴性乳腺癌MDA-MB-231细胞增殖及转移作用,评估了联合用药的作用效应,为虫草素在临床应用上增强抗乳腺癌作用提供了科学数据。研究结果表明,联合用药比单独用药作用效果更明显,根据Chou-Talalay法显示出在80μmol/L虫草素联合1μmol/L阿霉素的条件下,联合用药协同作用最优,CI值为0.665,细胞抑制率达到60.31%±1.06%;与对照组相比,平板克隆形成实验证明联合用药显著抑制细胞增殖,克隆形成率仅为7.03%±1.19%;显微观察细胞形态变化表明联合用药明显影响细胞生长;Hochest 33258染色、DNA Ladder发现联合用药对细胞凋亡诱导作用更显著,细胞凋亡率可达78.52%±11.18%;细胞划痕愈合实验检测联合用药显著抑制细胞迁移,细胞迁移率仅为18.82%±2.43%。本研究确证虫草素可协助阿霉素治疗乳腺癌的增敏作用。  相似文献   

10.
BackgroundBreast cancer is a leading cause of death in women and with an increasing worldwide incidence. Doxorubicin, as a first-line anthracycline-based drug is conventional used on breast cancer clinical chemotherapy. However, the drug resistances limited the curative effect of the doxorubicin therapy in breast cancer patients, but the molecular mechanism determinants of breast cancer resistance to doxorubicin chemotherapy are not fully understood. In order to explore the association between metadherin (MTDH) and doxorubicin sensitivity, the differential expressions of MTDH in breast cancer cell lines and the sensitivity to doxorubicin of breast cancer cell lines were investigated.MethodsThe mRNA and protein expression of MTDH were determined by real-time PCR and Western blot in breast cancer cells such as MDA-MB-231, MCF-7, MDA-MB-435S, MCF-7/ADR cells. Once MTDH gene was knocked down by siRNA in MCF-7/ADR cells and overexpressed by MTDH plasmid transfection in MDA-MB-231 cells, the cell growth and therapeutic sensitivity of doxorubicin were evaluated using MTT and the Cell cycle assay and apoptosis rate was determined by flow cytometry.ResultsMCF-7/ADR cells revealed highly expressed MTDH and MDA-MB-231 cells had the lowest expression of MTDH. After MTDH gene was knocked down, the cell proliferation was inhibited, and the inhibitory rate of cell growth and apoptosis rate were enhanced, and the cell cycle arrest during the G0/G1 phase in the presence of doxorubicin treatment. On the other hand, the opposite results were observed in MDA-MB-231 cells with overexpressed MTDH gene.ConclusionMTDH gene plays a promoting role in the proliferation of breast cancer cells and its high expression may be associated with doxorubicin sensitivity of breast cancer.  相似文献   

11.
This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.  相似文献   

12.
Prion protein (PrP) is well studied for its pathogenic role in prion disease, but its potential contribution to other pathological processes is less understood. PrP is expressed in a variety of cancers and at least in pancreatic and breast cancers, its expression appears to be associated with poor prognosis. To understand the role of PrP in breast cancer cells, we knocked down PrP expression in MDA-MB-435 breast cancer cells with small interfering RNA and subjected these cells to a series of analyses. We found that PrP knockdown in these cells does not affect cell proliferation or colony formation, but significantly influences the cellular response to cytotoxic stimuli. Compared to control cells, PrP knockdown cells exhibited an increased susceptibility to serum deprivation induced apoptosis, no change to staurosporine- or paclitaxel-induced cell deaths, and a reduced susceptibility to chemotherapy drug doxorubicin-induced cell death. To understand the mechanism of unexpected role of PrP in exacerbating doxorubicin-induced cytotoxicity, we analyzed cell death related Bcl-2 family proteins. We found that PrP knockdown alters the expression of several Bcl-2 family proteins, correlating with increased resistance to doxorubicin-induced cytotoxicity. Moreover, the enhanced doxorubicin resistance is independent of DNA damage related p53 pathway, but at least partially through the ERK1/2 pathway. Together, our study revealed that silencing PrP in MDA-MB-435 breast cancer cells results in very different responses to various cytotoxic stimuli and ERK1/2 signaling pathway is involved in PrP silencing caused resistance to doxorubicin.  相似文献   

13.
14.
The oncogene Bmi-1 is highly up-regulated in breast carcinoma and is found to be efficient in preventing apoptosis of the cancer cells. Doxorubicin is an important chemotherapeutic agent against breast carcinoma. However, the effective therapeutic response to doxorubicin is often associated with severe toxicity. The present study is targetted at developing a strategy to increase doxorubicin sensitivity to lower doses without compromising its efficacy. A stable cell line with a persistent silencing of Bmi-1 was established. MTT assay was performed to evaluate 50% inhibitory concentration (IC50) values of doxorubicin. Apoptosis was detected by FCM and the expression of related genes [phosphor-Akt (pAkt), totle-Akt (tAkt), Bcl-2 and Bax] was studied by Western blot. In vivo, the sensitivity of the tumor tissues against doxorubicin was evaluated by transplanted MCF-7 nude mice model and the apoptosis of tissue cells was detected by TUNEL assay. The expression of pAkt and Bcl-2 was down-regulated, whereas Bax was up-regulated in Bmi-1 silencing cells. The results obtained indicated that silencing of Bmi-1 can render MCF-7 cells more sensitive to doxorubicin which induced a significantly higher percentage of apoptosis cells in vitro and in vivo. All together these results clearly demonstrate that Bmi-1 siliencing combined treatment of doxorubicin might be a new strategy for biological treatment on breast cancer.  相似文献   

15.
Quercetin, the plant-derived phenolic compounds, plays a pivotal role in controlling hemostasis, by having potent antioxidant and free-radical scavenging properties. This flavonoid in combination with chemotherapeutic drugs improves the efficacy of these agents in induction of apoptosis in cancer cells. This study investigated the role of nano-quercetin (phytosome) in doxorubicin-induced apoptosis. Nanoparticles were characterized for particle size, zeta potential, scanning electron microscopy (SEM) and differential scanning calorimetric assessments. Anti-proliferative effect of formulations was evaluated by MTT assay. mRNA expression levels of target genes were measured by real time RT-PCR. The mean size of nanoparticles was 85 ± 2 nm with nearly narrow size distribution which was confirmed by SEM analysis. Our results showed that co-treatment of MCF-7 breast cancer cells with nano-quercetin and doxorubicin increased the percentage of apoptosis from 40.11 ± 7.72–58 ± 7.13 (p < 0.05). Furthermore, mRNA expression levels for downstream genes including NQO1 and MRP1 showed a marked decrease (p < 0.05). Taken together, our results suggest that phytosome technology can elevate the efficacy of chemotherapeutics by increasing the permeability of tumor cells to chemical agents. Our findings introduce a novel phytosome-dependent strategy to improve delivery of doxorubicin to the breast cancerous tissues.  相似文献   

16.
Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy-induced apoptosis. Here, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression, the number of GFP-LC3-II-labeled autophagosome positive cells and autophagic cell death (p < 0.05). Furthermore, doxorubicin at a high dose (IC(95), 1 microM) induced apoptosis but at a low dose (IC(50), 0.07 microM) induced only autophagy and Beclin-1 expression. When combined with Bcl-2 siRNA, doxorubicin (IC(50)) enhanced autophagy as indicated by the increased number cells with GFP-LC3-II-stained autophagosomes (punctuated pattern positive). These results provided the first evidence that targeted silencing of Bcl-2 induces autophagic cell death in MCF-7 breast cancer cells and that Bcl-2 siRNA may be used as a therapeutic strategy alone or in combination with chemotherapy in breast cancer cells that overexpress Bcl-2.  相似文献   

17.
RAS mutations or its activation by upstream receptor tyrosine kinases are frequently associated with poor response of carcinomas to chemotherapy. The 18 kDa propeptide domain of lysyl oxidase (LOX‐PP) released from the secreted precursor protein (Pro‐LOX) has been shown to inhibit RAS signaling and the transformed phenotype of breast, pancreatic, lung, and prostate cancer cells in culture, and formation of tumors by Her‐2/neu‐driven breast cancer cells in a mouse xenograft model. Here, we tested the effects of LOX‐PP on MIA PaCa‐2 pancreatic cancer cells, driven by mutant RAS. In MIA PaCa‐2 cells in culture, LOX‐PP attenuated the ERK and AKT activities and decreased the levels of the NF‐κB p65 and RelB subunits and cyclin D1, which are activated by RAS signaling. In mouse xenograft growth, LOX‐PP reduced growth of tumors by these pancreatic cancer cells, and the nuclear levels of the p65 NF‐κB subunit and cyclin D1 proteins. While biological agents attenuate tumor growth when used alone, often they have additive or synergistic effects when used in combination with chemotherapeutic agents. Thus, we next tested the hypotheses that LOX‐PP sensitizes pancreatic and breast cancer cells to the chemotherapeutic agent doxorubicin. Purified LOX‐PP enhanced the cytotoxic effects of doxorubicin in pancreatic and breast cancer cells, as judged by ATP production, Cell Death ELISA assays, caspase 3 activation, PARP cleavage, and Annexin V staining. Thus, LOX‐PP potentiates the cytotoxicity of doxorubicin on breast and pancreatic cancer cells, warranting additional studies with a broader spectrum of current cancer treatment modalities. J. Cell. Biochem. 111: 1160–1168, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The primary cilium is considered as a key component of morphological cellular stability. However, cancer cells are notorious for lacking primary cilia in most cases, depending upon the tumour type. Previous reports have shown the effect of starvation and cytostatics on ciliogenesis in normal and cancer cells although with limited success, especially when concerning the latter. In this study, we evaluated the presence and frequency of primary cilia in breast fibroblasts and in triple‐negative breast cancer cells after treatment with cytostatics finding that, in the case of breast fibroblasts, primary cilia were detected at their highest incidence 72 hours after treatment with 120 nM doxorubicin. Further, multiciliated cells were also detected after treatment with 80 nM doxorubicin. On the other hand, treatment with taxol increased the number of ciliated cells only at low concentrations (1.25 and 3.25 nM) and did not induce multiciliation. Interestingly, triple‐negative breast cancer cells did not present primary cilia after treatment with either doxorubicin or taxol. This is the first study reporting the presence of multiple primary cilia in breast fibroblasts induced by doxorubicin. However, the null effect of these cytostatics on primary cilia incidence in the evaluated triple negative breast carcinomas cell lines requires further research.  相似文献   

19.
Doxorubicin, a highly effective anticancer drug, produces severe side effect such as cardiotoxicity, which is mainly caused by its metabolite, doxorubicinol. While in vitro studies by measuring cellular concentration of doxorubicin have been reported, there have been no reports on measuring cellular concentration of the metabolites. In this report, we developed a sensitive and high-throughput method for measuring cellular concentrations of doxorubicin and its metabolites by ultra-high-performance liquid chromatography. The method achieved more than 96% recovery of doxorubicin and its metabolites from cell homogenates. Using simple separation conditions, doxorubicin and its three main metabolites, and the internal standard, were separated within 3 min. The method has a limit of quantification of 17.4 pg (32.0 fmol) injected doxorubicin. This high sensitivity enables the detection and intracellular quantification of doxorubicin and its metabolite, doxorubicinol, in cell homogenates, and its use will facilitate studies of the relationship between doxorubicin pharmacokinetics and therapeutic outcome.  相似文献   

20.
BackgroundBreast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial.MethodsWe used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms.ResultsKnockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin.ConclusionsDUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号