首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disruption of the Aspergillus nidulans high-affinity nitrate transporter genes (nrtA and nrtB) prevents growth on nitrate but not nitrite. We identified a distinct nitrite transporter (K(m)=4.2+/-1 microM, V(max)=168+/-21 nmolmg(-1)DW(-1)h(-1)), designated NitA. Disruption of nrtA, nrtB and nitA blocked growth on nitrite, despite low rates of nitrite depletion we ascribe to passive nitrous acid permeation. Growth of the single mutant nitA16 on nitrite was wild-type, suggesting that NrtA and/or NrtB transports nitrite as well as nitrate. Indeed, NrtA and NrtB transport nitrite at higher rates than NitA; K(m) and V(max) values were 16+/-4 microM and 808+/-67 nmolmg(-1)DW(-1)h(-1) (NrtA) and 11+/-1 microM and 979+/-17 nmolmg(-1)DW(-1)h(-1) (NrtB). We suggest that NrtA is a nitrate/nitrite transporter, NrtB absorbs nitrite in preference to nitrate and NitA is exclusively a nitrite transporter.  相似文献   

2.
3.
The transport of nitrate into prokaryotic and eukaryotic cells, of considerable interest to agriculture, ecology, and human health, is carried out by members of a distinct cluster of proteins within the major facilitator superfamily. To obtain structure/function information on this important class of nitrate permeases, a collection of chemically induced mutations in the nrtA gene encoding a 12-transmembrane domain, high-affinity nitrate transporter from the eukaryote Aspergillus nidulans was isolated and characterized. This mutational analysis, coupled with protein alignments, demonstrates the utility of the approach to predicting peptide motifs and individual residues important for the movement of nitrate across the membrane. These include the highly conserved nitrate signature motif (residues 166-173) in Tm 5, the conserved charged residues Arg87 (Tm 2) and Arg368 (Tm 8), as well as the aromatic residue Phe47 (Tm 1), all within transmembrane helices. No mutations were observed in the large central loop (Lp 6/7) between Tm 6 and Tm 7. Finally, the study of a strain with a conversion of Trp481 (Tm 12) to a stop codon suggests that all 12 transmembrane domains and/or the C-terminal tail are required for membrane insertion and/or stability of NrtA.  相似文献   

4.
High-affinity nitrite influx into mycelia of Aspergillus nidulans has been characterized by use of (13)NO(2)(-), giving average K(m) and V(max) values of 48 ± 8 μM and 228 ± 49 nmol mg(-1) dry weight (DW) h(-1), respectively. Kinetic analysis of a plot that included an additional large number of low-concentration fluxes gave an excellent monophasic fit (r(2) = 0.96), with no indication of sigmoidal kinetics. Two-dimensional (2D) and three-dimensional (3D) models of AnNitA are presented, and the possible roles of conserved asparagine residues N122 (transmembrane domain 3 ]Tm 3]), N173 (Tm 4), N214 (Tm 5), and N246 (Tm 6) are discussed.  相似文献   

5.
All eight cysteine residues, C90, C94, C143, C147, C219, C325, C367, and C431, present in transmembrane domains of the Aspergillus nidulans NrtA nitrate transporter protein were altered individually by site-specific mutagenesis. The results indicate that six residues, C90, C147, C219, C325, C367, and C431, are not required for nitrate transport. Although alterations of C94 and C143 are less well tolerated, these residues are not mandatory and their possible role is discussed. A series of constructs, all completely devoid of cysteine residues, was generated to permit future cysteine-scanning mutagenesis. The optimum cysteine-less combination was identified as C90A, C94A, C143A, C147T, C219S, C325S, C367S, and C431S. This mutant combination yielded transformant strains with up to 40% of wild-type nitrate transport activity. Furthermore, the K(m) value and the level of protein expression were found to be similar to those of the wild-type. This cysteine-less vector should allow us to investigate in detail potentially interesting NrtA amino acids (e.g. identified from homology comparisons) which may be involved in transport, by altering these singly to cysteine and studying such residues by thiol chemistry.  相似文献   

6.
7.
8.
Wang YY  Tsay YF 《The Plant cell》2011,23(5):1945-1957
This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport.  相似文献   

9.
The hyperthermophilic archaeon Pyrococcus furiosus can utilize different beta-glucosides, like cellobiose and laminarin. Cellobiose uptake occurs with high affinity (K(m) = 175 nM) and involves an inducible binding protein-dependent transport system. The cellobiose binding protein (CbtA) was purified from P. furiosus membranes to homogeneity as a 70-kDa glycoprotein. CbtA not only binds cellobiose but also cellotriose, cellotetraose, cellopentaose, laminaribiose, laminaritriose, and sophorose. The cbtA gene was cloned and functionally expressed in Escherichia coli. cbtA belongs to a gene cluster that encodes a transporter that belongs to the Opp family of ABC transporters.  相似文献   

10.
11.
Wild-type Aspergillus nidulans has an active transport system specific for urea which concentrates urea at least 50-fold relative to the extracellular concentration. It is substrate concentration dependent, with an apparent K m of 3×10–5 m for urea. Competition studies and the properties of mutants indicate that thiourea is taken up by the same system as urea. Thiourea is toxic at 5mm to wild-type cells of Aspergillus nidulans. Mutants, designated ureA1 to ureA16, resistant to thiourea have been isolated, and transport assays and growth tests show that they are specifically impaired in urea transport. The mutant ureA1 has a higher K m value than the wild type for thiourea uptake. The ureA locus has been assigned to linkage group VIII. ureA1 is recessive for thiourea resistance while semidominant for the low uptake characteristic. The urea uptake system is under nitrogen regulation, with l-glutamine as the probable effector. The mutants, meaA8 and gdhA1, which are insensitive to ammonium control of many nitrogen-regulated metabolic systems, are also insensitive to ammonium control of urea uptake, but both are sensitive to l-glutamine regulation.Formerly at the Department of Genetics, University of Glasgow, Glasgow, Scotland.  相似文献   

12.
13.
In this communication, we show that the pacC(c)14 mutation drastically reduced the mannose and N-acetylglycosamine content of the pacA-encoded acid phosphatase secreted by the fungus Aspergillus nidulans when grown at 22 degrees C, pH 5.0, compared to a control strain. The staining after PAGE was not observed for the pacA-encoded acid phosphatase, while the palD-encoded Pi-repressible alkaline phosphatase had an altered electrophoretic mobility. In addition, the secreted acid phosphatase also had a reduced number of isoforms visualized by staining after IEF and glycosylation had a protective effect against its heat inactivation. We also show that a full-length version of gene pacC-1 cloned from Neurospora crassa complemented the pacC(c)14 mutation of A. nidulans, including the remediation of both the acid and alkaline Pi-repressible phosphatases secreted at pH 5.0, which indicates that glycosylation of secreted phosphatases is mediated in A. nidulans by the conserved PacC pathway that governs pH-responsive gene expression.  相似文献   

14.
1. In Aspergillus nidulans nitrate and nitrite induce nitrate reductase, nitrite reductase and hydroxylamine reductase, and ammonium represses the three enzymes. 2. Nitrate reductase can donate electrons to a wide variety of acceptors in addition to nitrate. These artificial acceptors include benzyl viologen, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride, cytochrome c and potassium ferricyanide. Similarly nitrite reductase and hydroxylamine reductase (which are possibly a single enzyme in A. nidulans) can donate electrons to these same artificial acceptors in addition to the substrates nitrite and hydroxylamine. 3. Nitrate reductase can accept electrons from reduced benzyl viologen in place of the natural donor NADPH. The NADPH-nitrate-reductase activity is about twice that of reduced benzyl viologen-nitrate reductase under comparable conditions. 4. Mutants at six gene loci are known that cannot utilize nitrate and lack nitrate-reductase activity. Most mutants in these loci are constitutive for nitrite reductase, hydroxylamine reductase and all the nitrate-induced NADPH-diaphorase activities. It is argued that mutants that lack nitrate-reductase activity are constitutive for the enzymes of the nitrate-reduction pathway because the functional nitrate-reductase molecule is a component of the regulatory system of the pathway. 5. Mutants are known at two gene loci, niiA and niiB, that cannot utilize nitrite and lack nitrite-reductase and hydroxylamine-reductase activities. 6. Mutants at the niiA locus possess inducible nitrate reductase and lack nitrite-reductase and hydroxylamine-reductase activities. It is suggested that a single enzyme protein is responsible for the reduction of nitrite to ammonium in A. nidulans and that the niiA locus is the structural gene for this enzyme. 7. Mutants at the niiB locus lack nitrate-reductase, nitrite-reductase and hydroxylamine-reductase activities. It is argued that the niiB gene is a regulator gene whose product is necessary for the induction of the nitrate-utilization pathway. The niiB mutants either lack or produce an incorrect product and consequently cannot be induced. 8. Mutants at the niiribo locus cannot utilize nitrate or nitrite unless provided with a flavine supplement. When grown in the absence of a flavine supplement the activities of some of the nitrate-induced enzymes are subnormal. 9. The growth and enzyme characteristics of a total of 123 mutants involving nine different genes indicate that nitrate is reduced to ammonium. Only two possible structural genes for enzymes concerned with nitrate utilization are known. This suggests that only two enzymes, one for the reduction of nitrate to nitrite, the other for the reduction of nitrite to ammonium, are involved in this pathway.  相似文献   

15.
16.
Intracellular accumulation of nitrate, indicative of the operation of an active nitrate transport system, has been measured in intact cells of the cyanobacterium Anacystis nidulans. The ability of the cells to accumulate nitrate was effectively hindered by either ammonium addition or selective inhibition of CO2 fixation by DL-glyceraldehyde, with the effect of either compound being prevented by previously blocking ammonium assimilation. The results support the contention that nitrate utilization in cyanobacteria is regulated at the level of nitrate transport through the concerted action of ammonium assimilation and CO2 fixation.  相似文献   

17.
We have characterized the function of Leaf Permease1 (LPE1), a protein that is necessary for proper chloroplast development in maize, by functional expression in the filamentous fungus Aspergillus nidulans. The choice of this ascomycete was dictated by the similarity of its endogenous purine transporters to LPE1 and by particular genetic and physiological features of purine transport and metabolism in A. nidulans. When Lpe1 was expressed in a purine transport-deficient A. nidulans strain, the capacity for uric acid and xanthine transport was acquired. This capacity was directly dependent on Lpe1 copy number and expression level. Interestingly, overexpression of LPE1 from >10 gene copies resulted in transformants with pleiotropically reduced growth rates on various nitrogen sources and the absolute inability to transport purines. Kinetic analysis established that LPE1 is a high-affinity (K(m) = 30 +/- 2.5 microM), high-capacity transporter specific for the oxidized purines xanthine and uric acid. Competition studies showed that high concentrations of ascorbic acid (>30 mM) competitively inhibit LPE1-mediated purine transport. This work defines the biochemical function of LPE1, a plant representative of a large and ubiquitous transporter family. In addition, A. nidulans is introduced as a novel model system for the cloning and/or functional characterization of transporter genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号