首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta2 and -beta3 (TGF-beta2 and -beta3) are important members of TGF-beta family which play important roles in the growth, maintenance, and repair processes of developing embryos, neonates, and adults. Preparation of large quantities of these two cytokines, which is necessary for structural studies and other applications, has proven to be extremely difficult. We have developed a novel Chinese hamster ovary cell-based expression system for high-level expression and high recovery of recombinant human TGF-beta2 and -beta3. In this system, we used a mammalian expression vector which contains a glutamine synthetase coding region for amplification, together with a modified TGF-beta2 or -beta3 open reading frame for expression. The leader peptide of TGF-beta2 or -beta3 was replaced by that from the V-J2-C region of a mouse immunoglobulin kappa-chain, and a poly-histidine tag was inserted immediately after the leader sequence to facilitate protein purification without changing the mature TGF-beta2 or -beta3 amino acid sequence. In addition, the extreme N-terminal cysteine residue of TGF-beta2 or -beta3 was replaced by a serine residue. The resulting expression constructs produced two stable cell clones expressing 10 mg of TGF-beta2 and 8 mg of TGF-beta3 per liter of spent medium. The purification scheme involved the use of two simple chromatographic steps with a typical yield of 5 mg of TGF-beta2 and 4 mg of TGF-beta3. This method represents a significant improvement over previously published methods and may be applicable to other TGF-beta superfamily members. We further confirmed that latent TGF-beta2 and -beta3 can be activated by proteolysis and glycolysis, which have not been reported before.  相似文献   

2.
Transforming growth factor-beta 1 (TGF-beta 1) is synthesized as a latent high molecular weight complex in a human erythroleukemia cell line, HEL, treated with phorbol 12-myristate 13-acetate. The complex is comprised of three components: mature TGF-beta 1, the TGF-beta 1 latency-associated peptide (beta 1-LAP), and the latent TGF-beta 1-binding protein (LTBP). LTBP plays an important role in the assembly and secretion of the latent TGF-beta 1 complex; if the TGF-beta 1 precursor fails to bind to LTBP, much of it remains inside the cells and may contain anomalous disulfide bond(s) between beta 1-LAP and the mature TGF-beta 1 molecule (Miyazono, K., Olofsson, A., Colosetti, P., and Heldin, C.-H. (1991) EMBO J. 10, 1091-1101). In the present work, we have investigated the subcellular localization and properties of the TGF-beta 1 precursor retained intracellularly. When the HEL cells were metabolically labeled and chased for up to 72 h, a considerable part of the TGF-beta 1 precursor was still observed intracellularly in an unprocessed form. The secreted form of the TGF-beta 1 precursor was resistant to endoglycosidase H, whereas the intracellular form of the TGF-beta 1 precursor was sensitive to endoglycosidase H, regardless of the presence or absence of swainsonine, an inhibitor of mannosidase II. Indirect immunofluorescence microscopy revealed that the TGF-beta 1 precursor co-localized with mannosidase II, a marker for the Golgi complex, but not with protein disulfide isomerase, a marker for the endoplasmic reticulum. The intracellular TGF-beta 1 precursor was prepared from phorbol 12-myristate 13-acetate-treated HEL cells and tested for TGF-beta 1 bioactivity. Half-maximal inhibition of the DNA synthesis in mink lung epithelial cells, Mv1Lu, was observed at 80 pM of the acid-treated TGF-beta 1 precursor, whereas nontreated material showed minimal growth inhibitory activity. Taken together, these results indicate that the TGF-beta 1 precursor is retained inside the cells in the Golgi complex, mainly in a latent, immature form.  相似文献   

3.
Transforming growth factor-beta 1 (TGF-beta 1) is synthesized as latent complexes with high molecular weights. The large latent complex of TGF-beta 1 in platelets is composed of three components, i.e. the mature TGF-beta 1, which is non-covalently associated with a disulphide-bonded complex of the N-terminal remnant of the TGF-beta 1 precursor (TGF-beta 1-latency associated peptide) and the latent TGF-beta 1 binding protein (LTBP). The TGF-beta 1-latency associated peptide is sufficient for the latency of TGF-beta 1, whereas the functions of LTBP remain to be elucidated. In a human erythroleukemia cell line, HEL, the production of the latent form of TGF-beta 1 was induced more than 100-fold by phorbol 12-myristate 13-acetate. Analysis by Northern blotting revealed that both the TGF-beta 1 precursor and LTBP were induced in a coordinated fashion. Analysis by immunoprecipitation using antibodies against LTBP and the TGF-beta 1 precursor dimer revealed that LTBP has a molecular size of 205 kd under reducing conditions in this cell type, i.e. similar to that from cells transfected with cDNA for LTBP, but larger than the platelet form (125-160 kd). Limited tryptic digestion of LTBP in HEL cells and analysis by SDS-PAGE showed protein bands of similar sizes to those of platelet LTBP, suggesting that the difference in molecular sizes of LTBP involves cell-specific processing. The biosynthesis of the latent TGF-beta 1 was studied by pulse-chase analysis. LTBP became covalently associated with the TGF-beta 1 precursor within 15 min after synthesis in this cell line. Secretion of the large latent TGF-beta 1 complex was observed as early as 30 min after the synthesis of LTBP; at the same time, a free form of LTBP not bound to the TGF-beta 1 precursor was seen. In contrast, the TGF-beta 1 precursor remained inside the cells in an unprocessed form for a longer time period and the TGF-beta 1 precursor dimer without LTBP was secreted only very slowly. Furthermore, the results of partial tryptic digestion of this molecule suggested that it contained improper disulphide bonding. These results suggest that LTBP plays a critical role in the assembly and secretion of the latent TGF-beta 1.  相似文献   

4.
《The Journal of cell biology》1993,120(4):995-1002
Transforming growth factor beta (TGF-beta) is released from cells in a latent form consisting of the mature growth factor associated with an aminoterminal propeptide and latent TGF-beta binding protein (LTBP). The endogenous activation of latent TGF-beta has been described in co- cultures of endothelial and smooth muscle cells. However, the mechanism of this activation remains unknown. Antibodies to native platelet LTBP and to a peptide fragment of LTBP inhibit in a dose-dependent manner the activation of latent TGF-beta normally observed when endothelial cells are cocultured with smooth muscle cells. Inhibition of latent TGF- beta activation was also observed when cells were co-cultured in the presence of an excess of free LTBP. These data represent the first demonstration of a function for the LTBP in the extracellular regulation of TGF-beta activity and indicate that LTBP participates in the activation of latent TGF-beta, perhaps by concentrating the latent growth factor on the cell surface where activation occurs.  相似文献   

5.
The role of latent transforming growth factor-beta (TGF-beta) binding protein (LTBP) in the association of TGF-beta 1 to the extracellular matrix of cultured fibroblasts and HT-1080 fibrosarcoma cells was studied by immunochemical methods. The matrices were isolated from the cells, and the levels of LTBP and TGF-beta 1 were estimated by immunoblotting and immunoprecipitation. LTBP, TGF-beta 1, and its propeptide (latency-associated peptide, LAP) were found to associate to the extracellular matrix. Immunoblotting analysis indicated that treatment of the cells with plasmin resulted in a concomitant time and dose dependent release of both LTBP and TGF-beta 1 from the extracellular matrix to the supernatant. Comparison of molecular weights suggested that plasmin treatment resulted in the cleavage of LTBP from the high molecular weight fibroblast form to a form resembling the low molecular weight LTBP found in platelets. Pulse- chase and immunoprecipitation analysis indicated that both the free form of LTBP and LTBP complexed to latent TGF-beta were efficiently incorporated in the extracellular matrix, from where both complexes were slowly released to the culture medium. Addition of plasmin to the chase solution resulted, however, in a rapid release of LTBP from the matrix. Fibroblast derived LTBP was found to associate to the matrix of HT-1080 cells in a plasmin sensitive manner as shown by immunoprecipitation analysis. These results suggest that the latent form of TGF-beta 1 associates with the extracellular matrix via LTBP, and that the release of latent TGF-beta 1 from the matrix is a consequence of proteolytic cleavage(s) of LTBP.  相似文献   

6.
Transforming growth factor-beta 1 (TGF-beta 1) has been found to occur as latent high molecular weight complexes, with or without an associated component denoted latent TGF-beta 1-binding protein (LTBP). We show here that a human glioblastoma cell line (U-1240 MG) secretes all isoforms of TGF-beta s found in mammalian cells (TGF-beta 1, -beta 2, and -beta 3). Approximately 26% of the secreted TGF-beta is in an active form. Latent TGF-beta s were partially purified from medium conditioned by the U-1240 MG cell line using anion exchange chromatography. Analysis of the different fractions by immunoblotting using antisera against precursor parts of the different TGF-beta isoforms, and against LTBP, revealed that not only TGF-beta 1 but also other isoforms of TGF-beta may occur in high molecular weight forms containing LTBP. In addition, each one of the TGF-beta isoforms occurred in smaller forms not containing LTBP. Interestingly, each of the TGF-beta isoforms was also seen in complexes of about 210 kDa containing associated component(s) distinct from LTBP. These results indicate that each of the different isoforms of TGF-beta is synthesized and secreted by this glioblastoma cell line in several different high molecular weight latent forms; the biological importance of the various latent TGF-beta complexes is discussed.  相似文献   

7.
Transforming growth factor-betas (TGF-beta) are secreted as inactive complexes containing the TGF-beta, the TGF-beta propeptide, also called the latency-associated protein (LAP), and the latent TGF-beta binding protein (LTBP). Extracellular activation of this complex is a critical but incompletely understood step in TGF-beta regulation. We have investigated the role of LTBP in modulating TGF-beta generation by the integrin alphaVbeta6. We show that even though alphavbeta6 recognizes an RGD on LAP, LTBP-1 is required for alphaVbeta6-mediated latent TGF-beta activation. The domains of LTBP-1 necessary for activation include the TGF-beta propeptide-binding domain and a basic amino acid sequence (hinge domain) with ECM targeting properties. Our results demonstrate an LTBP-1 isoform-specific function in alphaVbeta6-mediated latent TGF-beta activation; LTBP-3 is unable to substitute for LTBP-1 in this assay. The results reveal a functional role for LTBP-1 in latent TGF-beta activation and suggest that activation of specific latent complexes is regulated by distinct mechanisms that may be determined by the LTBP isoform and its potential interaction with the matrix.  相似文献   

8.
Latent transforming growth factor-beta-binding proteins (LTBPs) are extracellular matrix (ECM) glycoproteins that play a major role in storage of latent TGF-beta in the ECM and regulate its availability. We have previously identified fibronectin as a key molecule for incorporation of LTBP1 and TGF-beta into the ECM of osteoblasts and fibroblasts. Here we provide evidence that heparan sulfate proteoglycans may mediate binding between LTBP1 and fibronectin. We have localized critical domains in the N terminus of LTBP1 that are required for co-localization with fibronectin in osteoblast cultures and have identified heparin binding sites in the N terminus of LTBP1 between residues 345 and 487. Solid-phase binding assays suggest that LTBP1 does not bind directly to fibronectin but that the binding is indirect. Heparin coupled to bovine serum albumin (heparin-BSA) was able to mediate binding between fibronectin and LTBP1. Treatment of primary osteoblast cultures with heparin or heparin-BSA but not with chondroitin sulfate impaired LTBP1 deposition onto fibronectin without inhibiting expression of LTBP1. Inhibition of LTBP1 incorporation was accompanied by reduced incorporation of latent TGF-beta into the ECM, with increased amounts of soluble latent TGF-beta. Inhibition of attachment of glycosaminoglycans to the core proteins of proteoglycans by beta-d-xylosides also reduced incorporation of LTBP1 into the ECM. These studies suggest that heparan sulfate proteoglycans may play a critical role in regulating TGF-beta availability by controlling the deposition of LTBP1 into the ECM in association with fibronectin.  相似文献   

9.
High-level constitutive expression of the human pancreatic lipase-related protein 1 (HPLRP1) was achieved using the methylotrophic yeast Pichia pastoris. The HPLRP1 cDNA, including its original leader sequence, was subcloned into the pGAPZB vector and further integrated into the genome of P. pastoris X-33 under the control of the glyceraldehyde 3-phosphate dehydrogenase (GAP) constitutive promoter. A major protein with a molecular mass of 50 kDa was found to be secreted into the culture medium and was identified using anti-HPLRP1 polyclonal antibodies as HPLRP1 recombinant protein. The level of expression reached 100-120 mg of HPLRP1 per liter of culture medium after 40 h, as attested by specific and quantitative enzyme-linked immunosorbent assay. A single cation-exchange chromatography sufficed to obtain a highly purified recombinant HPLRP1 after direct batch adsorption onto S-Sepharose of the HPLRP1 present in the culture medium, at pH 5.5. N-terminal sequencing and mass spectrometry analysis were carried out to monitor the production of the mature protein and to confirm that its signal peptide was properly processed.  相似文献   

10.
Transforming growth factor-betas (TGF-betas) are produced by most cells in large latent complexes of TGF-beta and its propeptide (LAP) associated with a binding protein. The latent TGF-beta binding proteins (LTBPs-1, -2 and -3) mediate the secretion and, subsequently, the association of latent TGF-beta complexes with the extracellular matrix (ECM). The association of beta1-LAP with LTBP-1 was characterized at the molecular level with an expression system in mammalian cells, where TGF-beta1 and various fragments of LTBP-1 were co-expressed and secreted with the aid of a signal peptide synthesized to the LTBP-1 constructs. Immunoblotting of the fusion protein complexes indicated that the third 8-Cys repeat of LTBP-1 bound covalently to the LAP region of TGF-beta1. The cysteine required for the association between LTBP-1 and beta1-LAP was mapped to Cys33 of beta1-LAP. The N-terminal region of LTBP-1 consisting of the first 400 amino acids was found to associate covalently with the ECM. The data indicate that an 8-Cys repeat of LTBP is capable of covalent and specific protein-protein interactions. These interactions are mediated by exchanging cysteine disulfide bonds between the core 8-Cys repeat and an optionally associated protein during the secretion. This is, to our knowledge, the first demonstration of an extracellular protein module that is able to exchange cysteine disulfide bonds with heterologous ligand proteins.  相似文献   

11.
Transforming growth factor beta (TGF-beta) is secreted primarily as a latent complex consisting of the TGF-beta homodimer, the TGF-beta propeptides (called the latency-associated protein or LAP) and the latent TGF-beta binding protein (LTBP). Mature TGF-beta remains associated with LAP by non-covalent interactions that block TGF-beta from binding to its receptor. Complex formation between LAP and LTBP is mediated by an intramolecular disulfide exchange between the third 8-cysteine (8-Cys3) domain of LTBP with a pair of cysteine residues in LAP. Only the third 8-Cys domains of LTBP-1, -3, and -4 bind LAP. From comparison of the 8-Cys3(LTBP-1) structure with that of the non-TGF-beta-binding 8-Cys6(fibrillin-1), we observed that a two-residue insertion in 8-Cys3(LTBP-1) increased the potential for disulfide exchange of the 2-6 disulfide bond. We further proposed that five negatively charged amino acid residues surrounding this bond mediate initial protein-protein association. To validate this hypothesis, we monitored binding by fluorescence resonance energy transfer (FRET) analysis and co-expression assays with TGF-beta1 LAP (LAP-1) and wild-type and mutant 8-Cys3 domains. FRET experiments demonstrated ionic interactions between LAP-1 and 8-Cys3. Mutation of the five amino acid residues revealed that efficient complex formation is most dependent on two of these residues. Although 8-Cys3(LTBP-1) binds proTGF-betas effectively, the domain from LTBP-4 does so poorly. We speculated that this difference was due to the substitution of three acidic residues by alanine, serine, and arginine in the LTBP-4 sequence. Additional experiments with 8-Cys3(LTBP-4) indicated that enhanced binding of LAP to 8-Cys3(LTBP-4) is achieved if the residues A, S, and R are changed to those in 8-Cys3(LTBP1) (D, D, and E) and the QQ dipeptide insertion of LTBP-4 is changed to the FP in 8-Cys3(LTBP-1). These studies identify surface residues that contribute to the interactions of 8-Cys3 and LAP-1 and may yield information germane to the interaction of 8-Cys domains and additional TGF-beta superfamily propeptides, an emerging paradigm for growth factor regulation.  相似文献   

12.
Growth plate chondrocytes make TGF-beta1 in latent form (LTGF-beta1) and store it in the extracellular matrix via LTGF-beta1 binding protein (LTBP1). 1,25-(OH)2D3 (1,25) regulates matrix protein production in growth zone (GC) chondrocyte cultures, whereas 24,25-(OH)2D3 (24,25) does so in resting zone (RC) cell cultures. The aim of this study was to determine if 24,25 and 1,25 regulate LTBP1 expression as well as the LTBP1 -mediated storage of TGF-beta1 in the extracellular matrix of RC and GC cells. Expression of LTBP1 and TGF-beta1 in the growth plate and in cultured RC and GC cells was determined by in situ hybridization using sense and antisense oligonucleotide probes based on the published rat LTBP1 and TGF-beta1 cDNA sequences. Fourth passage male rat costochondral RC and GC chondrocytes were treated for 24 h with 10(-7)-10(-9) M 24,25 and 10(-8)-10(-10) M 1,25, respectively. LTBP1 and TGF-beta1 mRNA levels were measured by in situ hybridization; production of LTGF-beta1, LTGF-beta2, and LTBP1 protein in the conditioned media was verified by immunoassays of FPLC-purified fractions. In addition, ELISA assays were used to measure the effect of 1,25 and 24,25 on the level of TGF-beta1 in the media and matrix of the cultures. Matrix-bound LTGF-beta1 was released by digesting isolated matrices with 1 U/ml plasmin for 3 h at 37 degrees C. LTBP1 and TGF-beta1 mRNAs are co-expressed throughout the growth plate, except in the lower hypertrophic area. Cultured GC cells express more LTBP1 and TGF-beta1 mRNAs than RC cells. FPLC purification of the conditioned media confirmed that RC cells produce LTGF-beta1, LTGF-beta2, and LTBP1. GC cells also produce LTGF-beta2, but at lower concentrations. 1,25 dose-dependently increased the number of GC cells with high LTBP1 expression, as seen by in situ hybridization. 24,25 had a similar, but less pronounced, effect on RC cells. 1,25 also caused a dose-dependent increase in the amount of TGF-beta1 protein found in the matrix, significant at 10(-8) and 10(-9) M, and a corresponding decrease in TGF-beta1 in the media. 24,25 had no effect on the level of TGF-beta1 in the matrix or media produced by RC cells. This indicates that 1,25 induces the production of LTBP1 by GC cells and suggests that the TGF-beta1 content of the media is reduced through the formation of latent TGF-beta1 -LTBP1 complexes which mediates storage in the matrix. Although 24,25 induced the expression of LTBP1 by RCs, TGF-beta1 incorporation into the matrix is not regulated by this vitamin D3 metabolite. Thus, vitamin D3 metabolites may play a role in regulating the availability of TGF-beta1 by modulating LTBP1 production.  相似文献   

13.
The binding of growth factors to the extracellular matrix (ECM) may be a key pathway for regulation of their activity. We have shown that a major mechanism for storage of transforming growth factor-beta (TGF-beta) in bone ECM is via its association with latent TGF-beta-binding protein-1 (LTBP1). Although proteolytic cleavage of LTBP1 has been reported, it remains unclear whether this represents a physiological mechanism for release of matrix-bound TGF-beta. Here we examined the role of LTBP1 in cell-mediated release of TGF-beta from bone ECM. We first characterized the soluble and ECM-bound forms of latent TGF-beta produced by primary osteoblasts. Next, we examined release of ECM-bound TGF-beta by bone resorbing cells. Isolated avian osteoclasts and rabbit bone marrow-derived osteoclasts released bone matrix-bound TGF-beta via LTBP1 cleavage. 1,25-Dihydroxyvitamin D3 enhanced LTBP1 cleavage, resulting in release of 90% of the ECM-bound LTBP1. In contrast, osteoblasts failed to cleave LTBP1 or release TGF-beta from bone ECM. Cleavage of LTBP1 by avian osteoclasts was inhibited by serine protease and metalloproteinase (MMP) inhibitors. Studies using purified proteases showed that plasmin, elastase, MMP2, and MMP9 were able to cleave LTBP1 to produce 125-165-kDa fragments. These studies identify LTBP1 as a novel substrate for MMPs and provide the first demonstration that LTBP1 proteolysis may be a physiological mechanism for release of TGF-beta from ECM-bound stores, potentially the first step in the pathway by which matrix-bound TGF-beta is rendered active.  相似文献   

14.
All TGF-beta family members have a prodomain that is important for secretion. Lack of secretion of a TGF-beta family member GDF5 is known to underlie some skeletal abnormalities, such as brachydactyly type C that is characterized by a huge and unexplained phenotypic variability. To search for potential phenotypic modifiers regulating secretion of GDF5, we compared cells overexpressing wild type (Wt) GDF5 and GDF5 with a novel mutation in the prodomain identified in a large Pakistani family with Brachydactyly type C and mild Grebe type chondrodyslplasia (c527T>C; p.Leu176Pro). Initial in vitro expression studies revealed that the p.Leu176Pro mutant (Mut) GDF5 was not secreted outside the cells. We subsequently showed that GDF5 was capable of forming a complex with latent transforming growth factor binding proteins, LTBP1 and LTBP2. Furthermore, secretion of LTBP1 and LTBP2 was severely impaired in cells expressing the Mut-GDF5 compared to Wt-GDF5. Finally, we demonstrated that secretion of Wt-GDF5 was inhibited by the Mut-GDF5, but only when LTBP (LTBP1 or LTBP2) was co-expressed. Based on these findings, we suggest a novel model, where the dosage of secretory co-factors or stabilizing proteins like LTBP1 and LTBP2 in the microenvironment may affect the extent of GDF5 secretion and thereby function as modifiers in phenotypes caused by GDF5 mutations.  相似文献   

15.
The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation.  相似文献   

16.
17.
18.
Disruption of latent TGF-beta binding protein (LTBP)-4 expression in the mouse leads to abnormal lung development and colorectal cancer. Lung fibroblasts from these mice produced decreased amounts of active TGF-beta, whereas secretion of latent TGF-beta was significantly increased. Expression and secretion of TGF-beta2 and -beta3 increased considerably. These results suggested that TGF-beta activation but not secretion would be severely impaired in LTBP-4 -/- fibroblasts. Microarrays revealed increased expression of bone morphogenic protein (BMP)-4 and decreased expression of its inhibitor gremlin. This finding was accompanied by enhanced expression of BMP-4 target genes, inhibitors of differentiation 1 and 2, and increased deposition of fibronectin-rich extracellular matrix. Accordingly, increased expression of BMP-4 and decreased expression of gremlin were observed in mouse lung. Transfection of LTBP-4 rescued the -/- fibroblast phenotype, while LTBP-1 was inefficient. Treatment with active TGF-beta1 rescued BMP-4 and gremlin expression to wild-type levels. Our results indicate that the lack of LTBP-4-mediated targeting and activation of TGF-beta1 leads to enhanced BMP-4 signaling in mouse lung.  相似文献   

19.
L E Gentry  B W Nash 《Biochemistry》1990,29(29):6851-6857
Transforming growth factor beta 1 (TGF-beta 1) is proteolytically derived from the carboxyl terminus of a 390 amino acid precursor molecule termed pre-pro-TGF-beta 1. Previous studies have suggested that the pro piece of pre-pro-TGF-beta 1 may play an important role in the formation of an inactive, latent complex. These latent forms are thought to be important in the regulation of TGF-beta 1 activity. To understand this latent complex in more detail, we have expressed the pro domain of pre-pro-TGF-beta 1 in tissue culture cells independent of the mature growth factor. A stop codon was genetically engineered into the cDNA of pre-pro-TGF-beta 1 by changing the Arg-278 codon from CGA to the STOP codon TGA. The resulting protein is truncated just prior to the amino-terminal Ala residue of the mature growth factor. Transient expression studies and immunoblotting indicate that this pro piece is readily made and secreted by the COS-1 cells; the major form of the expressed pro piece, when analyzed by SDS-polyacrylamide gel electrophoresis, behaves as a disulfide-linked dimer (Mr 80,000). Bioassays, using mink lung indicator cells, reveal that the pro domain forms an inactive complex with exogenously added mature TGF-beta 1. Treatment of this complex with heat or acid results in the release of active TGF-beta 1, indicating an in vitro structure similar to natural, latent TGF-beta 1 complexes. The pro piece from TGF-beta 1 was also found to form latent structures with two closely related family members, TGF-beta 1.2 and TGF-beta 2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cathepsin B-like genes from Leishmania donovani and Leishmania chagasi have been isolated and characterized. It is a single gene, which is constitutively expressed in all the life cycle stages of the parasite. Studies using cathepsin B-specific inhibitor treatment suggested that cathepsin B does not seem to play a role in the promastigote stages of the parasite, however it aids in the parasite survival within the host macrophages. Antisense mRNA inhibition of cathepsin B gene also revealed that it plays an important role in the parasite survival within the host macrophages. Furthermore, for the first time, we have shown that Leishmania whole cell lysates as well as the recombinant cathepsin B protein cleaved human recombinant latent transforming growth factor (TGF)-beta1 into a mature peptide releasing the latency associated protein, in a cell-free incubation system. Mink lung epithelial cell growth inhibition assay revealed that the cleaved TGF-beta1 was biologically active, suggesting that Leishmania cathepsin B can cleave latent TGF-beta1 into mature and active form. These results suggest that cathepsin B plays an important role in Leishmania survival within the host macrophages by activating latent TGF-beta1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号