首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ctenophores are one of the most basally branching lineages of metazoans with the largest mitochondrial organelles in the animal kingdom. We sequenced the mitochondrial (mtDNA) genome from the Pacific cidipid ctenophore, Pleurobrachia bachei. The circular mitochondrial genome is 11,016 nts, with only 12 genes, and one of the smallest metazoan mtDNA genomes recorded. The protein coding genes are intronless cox1-3, cob, nad1, 3, 4, 4L and 5. The nad2 and 6 genes are represented as short fragments whereas the atp6 gene was found in the nuclear genome. Only the large ribosomal RNA subunit and two tRNAs were present with possibly the small subunit unidentifiable due to extensive fragmentation. The observed unique features of this mitochondrial genome suggest that nuclear and mitochondrial genomes have evolved at very different rates. This reduced mtDNA genome sharply contrasts with the very large sizes of mtDNA found in other basal metazoans including Porifera (sponges), and Placozoa (Trichoplax).  相似文献   

2.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. The genome contains no introns involved in recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely low and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as the inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophila made it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

3.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. Mitochondrial genes lack introns and recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely high and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophilamade it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

4.
Seven segments of mitochondrial DNA (mtDNA), comprising 97% of the mitochondrial genome, were amplified by polymerase chain reaction (PCR) and examined for restriction site variation using 13 restriction endonucleases in three species of Pacific salmon: pink (Oncorhynchus gorbuscha), chum (O. keta) and sockeye (O. nerka) salmon. The distribution of variability across the seven mtDNA segments differed substantially among species. Little similarity in the distribution of variable restriction sites was found even between the mitochondrial genomes of the even- and odd-year broodlines of pink salmon. Significantly different levels of nucleotide diversity were detected among three groups of genes: six NADH-dehydrogenase genes had the highest; two rRNA genes had the lowest; and a group that included genes for ATPase and cytochrome oxidase subunits, the cytochrome b gene, and the control region had intermediate levels of nucleotide diversity. Genealogies of mtDNA haplotypes were reconstructed for each species, based on the variation in all mtDNA segments. The contributions of variation within different segments to resolution of the genealogical trees were compared within each species. With the exception of sockeye salmon, restriction site data from different genome segments tended to produce rather different trees (and hence rather different genealogies). In the majority of cases, genealogical information in different segments of mitochondrial genome was additive rather than congruent. This finding has a relevance to phylogeographic studies of other organisms and emphasizes the importance of not relying on a limited segment of the mtDNA genome to derive a phylogeographic structure.  相似文献   

5.
This is the first report of a complete mitochondrial genome sequence from a photosynthetic member of the stramenopiles, the chrysophyte alga Chrysodidymus synuroideus. The circular-mapping mitochondrial DNA (mtDNA) of 34 119 bp contains 58 densely packed genes (all without introns) and five unique open reading frames (ORFs). Protein genes code for components of respiratory chain complexes, ATP synthase and the mitoribosome, as well as one product of unknown function, encoded in many other protist mtDNAs (YMF16). In addition to small and large subunit ribosomal RNAs, 23 tRNAs are mtDNA-encoded, permitting translation of all codons present in protein-coding genes except ACN (Thr) and CGN (Arg). The missing tRNAs are assumed to be imported from the cytosol. Comparison of the C.synuroideus mtDNA with that of other stramenopiles allowed us to draw conclusions about mitochondrial genome organization, expression and evolution. First, we provide evidence that mitochondrial ORFs code for highly derived, unrecognizable versions of ribosomal or respiratory genes otherwise ‘missing’ in a particular mtDNA. Secondly, the observed constraints in mitochondrial genome rearrangements suggest operon-based, co-ordinated expression of genes functioning in common biological processes. Finally, stramenopile mtDNAs reveal an unexpectedly low variability in genome size and gene complement, testifying to substantial differences in the tempo of mtDNA evolution between major eukaryotic lineages.  相似文献   

6.
A cosmid library and physical maps of mitochondrial DNA (mtDNA) from a liverwort, Marchantia polymorpha, were constructed using the cosmid clones. Electrophoresis profile and the physical maps indicated that the liverwort mtDNA was approximately 183 kb long, the smallest among plant mtDNAs, and that it consisted of a single circular molecule. Southern hybridization analysis showed that genes typical to the mitochondrial genome existed in a single copy, and also that there was no incorporation of chloroplast DNA fragments into the mitochondrial genome.  相似文献   

7.
Plants contain large mitochondrial genomes, which are several times as complex as those in animals, fungi or algae. However, genome size is not correlated with information content. The mitochondrial genome (mtDNA) of Arabidopsis specifies only 58 genes in 367 kb, whereas the 184 kb mtDNA in the liverwort Marchantia polymorpha codes for 66 genes, and the 58 kb genome in the green alga Prototheca wickerhamii encodes 63 genes. In Arabidopsis’ mtDNA, genes for subunits of complex II, for several ribosomal proteins and for 16 tRNAs are missing, some of which have been transferred recently to the nuclear genome. Numerous integrated fragments originate from alien genomes, including 16 sequence stretches of plastid origin, 41 fragments of nuclear (retro)transposons and two fragments of fungal viruses. These immigrant sequences suggest that the large size of plant mitochondrial genomes is caused by secondary expansion as a result of integration and propagation, and is thus a derived trait established during the evolution of land plants.  相似文献   

8.
以暗纹东方鲀(Takifugu fasciatus)肝的线粒体DNA为模板,参照红鳍东方鲀(T.rubripes)等近源鱼类的线粒体基因组DNA序列,设计合成14对特异引物,进行PCR扩增并测序,首次获得了暗纹东方鲀线粒体基因组全序列。结果表明,暗纹东方鲀线粒体基因组序列全长16 444 bp(GenBank登录号为GQ409967),A+T含量为55.8%,其mtDNA结构与其他脊椎动物相似,由22个tRNA基因、2个rRNA基因、13个蛋白质编码基因和1段819 bp非编码的控制区(D-loop)所组成。蛋白质基因除COⅠ和ND6的起始密码子为GTG、CCT以外,均为典型的起始密码子ATG。ND1、ATPase8、COⅢ、ND4L、ND5、Cyt b使用典型的终止密码子TAA,其他的使用不完全终止密码子。除ND6和tRNAGln、tRNAAla、tRNAAsn、tRNACys、tRNATyr、tRNASer、tRNAGlu、tRNAPro在L-链上编码之外,其余基因均在H-链编码。基因排列顺序与已测定的鲀类一致,这显示了鲀类线粒体基因排列顺序上的保守性。tRNA基因核苷酸长度为64~73nt,预测了22个tRNA基因的二级结构,均呈较为典型的三叶草状。基于19种鲀类mtDNA全序列构建的进化树表明,暗纹东方鲀与红鳍东方鲀、中华东方鲀(T.chinensis)聚成一个姊妹群。结果还支持东方鲀属鱼类为一单系类群。  相似文献   

9.
《BBA》2022,1863(5):148554
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome – mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.  相似文献   

10.
11.
Many human diseases including development of cancer is associated with depletion of mitochondrial DNA (mtDNA) content. These diseases are collectively described as mitochondrial DNA depletion syndrome (MDS). High similarity between yeast and human mitochondria allows genomic study of the budding yeast to be used to identify human disease genes. In this study, we systematically screened the pre-existing respiratory-deficient Saccharomyces cerevisiae yeast strains using fluorescent microscopy and identified 102 nuclear genes whose deletions result in a complete mtDNA loss, of which 52 are not reported previously. Strikingly, these genes mainly encode protein products involved in mitochondrial protein biosynthesis process (54.9%). The rest of these genes either encode protein products associated with nucleic acid metabolism (14.7%), oxidative phosphorylation (3.9%), or other protein products (13.7%) responsible for bud-site selection, mitochondrial intermembrane space protein import, assembly of cytochrome-c oxidase, vacuolar protein sorting, protein-nucleus import, calcium-mediated signaling, heme biosynthesis and iron homeostasis. Thirteen (12.7%) of the genes encode proteins of unknown function. We identified human orthologs of these genes, conducted the interaction between the gene products and linked them to human mitochondrial disorders and other pathologies. In addition, we screened for genes whose defects affect the nuclear genome integrity. Our data provide a systematic view of the nuclear genes involved in maintenance of mitochondrial DNA. Together, our studies i) provide a global view of the genes regulating mtDNA content; ii) provide compelling new evidence toward understanding novel mechanism involved in mitochondrial genome maintenance and iii) provide useful clues in understanding human diseases in which mitochondrial defect and in particular depletion of mitochondrial genome plays a critical role.  相似文献   

12.
The hallmarks of animal mitochondrial DNA (mtDNA) are a rapid rate of sequence evolution, a small genome carrying the same set of homologous genes, maternal inheritance and lack of recombination. Over the past few years, a variety of different observations has challenged these accepted notions of mitochondrial biology. Notable examples include evidence for variable rates of mtDNA sequence evolution among taxa, evidence for large and variable mitochondrial genome sizes in certain groups, and a growing number of cases in metazoans of 'paternal leakage' in the inheritance of mtDNA. Several recent studies have uncovered different lines of evidence suggesting that an organism's thermal habit, or metabolic rate, can influence the evolution of mtDNA.  相似文献   

13.
Several lines of evidence suggest that mitochondrial genetic factors may influence susceptibility to multiple sclerosis. To explore this hypothesis further, we re-sequenced the mitochondrial genome (mtDNA) from 159 patients with multiple sclerosis and completed a haplogroup analysis including a further 835 patients and 1,506 controls. A trend towards over-representation of super-haplogroup U was the only evidence for association with mtDNA that we identified in these samples. In a parallel analysis of nuclear encoded mitochondrial genes, we also found a trend towards association with the complex I gene, NDUFS2. These results add to the evidence suggesting that variation in mtDNA and nuclear encoded mitochondrial genes may contribute to disease susceptibility in multiple sclerosis.  相似文献   

14.
Human mitochondrial DNA (mtDNA) is a nonrecombining genome that codes for 13 subunits of the mitochondrial oxidative phosphorylation system, 2 rRNAs, and 22 tRNAs. Mutations have accumulated sequentially in mtDNA lineages that diverged tens of thousands of years ago. The genes in mtDNA are subject to different functional constraints and are therefore expected to evolve at different rates, but the rank order of these rates should be the same in all lineages of a phylogeny. Previous studies have indicated, however, that specific regions of mtDNA may have experienced different histories of selection in different lineages, possibly because of lineage-specific interactions or environmental factors such as climate. We report here on a survey for lineage-specific patterns of nucleotide polymorphism in human mtDNA. We calculated molecular polymorphism indices and neutrality tests for classes of functional sites and genes in 837 human mtDNA sequences, compared the results between continent-specific mtDNA lineages, and used two sliding window methods to identify differences in the patterns of polymorphism between haplogroups. A general correlation between nucleotide position and the level of nucleotide polymorphism was identified in the coding region of the mitochondrial genome. Nucleotide diversity in the protein-coding sequence of mtDNA was generally not much higher than that found for many genes in nuclear DNA. A comparison of nonsynonymous/synonymous rate ratios in the 13 protein-coding genes suggested differences in the relative levels of selection between haplogroups, including the European haplogroup clusters. Interestingly, a segment of the MTND5 gene was found to be almost void of segregating sites and nonsynonymous mutations in haplogroup J, which has been associated with susceptibility to certain complex diseases. Our results suggest that there are haplogroup-specific differences in the intensity of selection against particular regions of the mitochondrial genome, indicating that some mutations may be non-neutral within specific phylogenetic lineages but neutral within others.  相似文献   

15.
Phylogenetic analysis of different regions of the mitochondrial genome of the sable showed the presence of several topologies of phylogenetic trees, but the most statistically significant topology is A-BC, which was obtained as a result of the analysis of the mitochondrial genome as a whole, as well as of the individual CO1, ND4, and ND5 genes. Analysis of the intergroup divergence of the mtDNA haplotypes (D xy) indicated that the maximum D xy values between A and BC groups were accompanied by minimum differences between B and C groups only for six genes showing the A-BC topology (12S rRNA, CO1, CO2, ND4, ND5, and CYTB). It is assumed that the topological conflicts observed in the analysis of individual sable mtDNA genes are associated with the uneven distribution of mutations along the mitochondrial genome and the mitochondrial tree. This may be due to random causes, as well as the nonuniform effect of selection.  相似文献   

16.
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.  相似文献   

17.
A cosmid library and physical maps of mitochondrial DNA (mtDNA) from a liverwort, Marchantia polymorpha, were constructed using the cosmid clones. Electrophoresis profile and the physical maps indicated that the liverwort mtDNA was approximately 183 kb long, the smallest among plant mtDNAs, and that it consisted of a single circular molecule. Southern hybridization analysis showed that genes typical to the mitochondrial genome existed in a single copy, and also that there was no incorporation of chloroplast DNA fragments into the mitochondrial genome.  相似文献   

18.
19.
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6?kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.  相似文献   

20.
A study of an invertebrate mitochondrial genome, that of the blowflyPhormia regina, has been initiated to compare its structural and functional relatedness to other metazoan mitochondrial genomes. A restriction map of mitochondrial DNA (mtDNA) isolated from sucrose gradient-purified mitochondria has been established using a combination of single and double restriction endonuclease digestions and hybridizations with isolated mtDNA fragments, revealing a genome size of 17.5 kilobases (kb). A number of mitochondrial genes including those encoding the 12 S and 16 S ribosomal RNA, the cytochromec oxidase I subunit (COI) and an unidentified open reading frame (URF2) have been located on thePhormia mtDNA by Southern blot analysis using as probes both isolated mtDNA fragments and oligonucleotides derived from the sequences of previously characterized genes from rat andDrosophila yakuba mtDNAs. These data indicate that for those regions examined, the mitochondrial genome organization of blowfly mtDNA is the same as that ofDrosophila yakuba, the order being COI-URF2-12 S-16 S. These data also report the presence of an A + T-rich region, located as a 2.5-kb region between the URF2 and the 12 S rRNA genes, and its amplification by the polymerase chain reaction is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号