首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
《Free radical research》2013,47(10):1249-1257
Abstract

Oxidative stress and deficiency of the enzyme catalase, which is the primary scavenger of the oxidant H2O2, may contribute to diabetes. The current study examined two polymorphisms in the catalase gene, ?262C>nT in the promoter and 111C>T in exon 9, and their effects on blood catalase activity as well as on concentrations of blood glucose, haemoglobin A1c, triglyceride, cholesterol, HDL, LDL, ApoA-I and ApoB. Subjects were type-1 and type-2 diabetics. We evaluated PCR-single strand conformational polymorphism for 111C>T and PCR-restriction fragment length polymorphism for ??262C>T. TT genotype frequency of 111C>T polymorphism was increased in type-1 diabetes. Type-2 diabetics with the CC or CT genotypes had decreased catalase and increased glucose, hemoglobinA1c and ApoB. Type-2 diabetics who have TT genotype in ?262C>T may have elevated risk for diabetes complications; these patients had the lowest mean catalase and HDL, as well as the highest glucose, haemoglobin A1c, cholesterol and ApoB.  相似文献   

2.
Hydrogen peroxide plays a major role in the pathomechanism of diabetes mellitus and its main regulator is enzyme catalase. The blood catalase and the C111T polymorphism in exon 9 was examined in type 1, type 2 and gestational diabetes mellitus. Compared to the control group (104.7 +/- 18.5 MU/l) significantly decreased (p < 0.001) blood catalase activities were detected in type 2 (71.2 +/- 14.6 MU/l), gestational (68.5 +/- 12.2 MU/l) diabetes mellitus and without change in type 1 (102.5 +/- 26.9 MU/l). The blood catalase decreased (p = 0.043) with age for type 2 diabetics and did not change (p>0.063) for type 1, gestational diabetic patients and controls. Blood catalase showed a weak association with hemoglobin A1c for type 1 diabetic patients (r = 0.181, increasing). The mutant T allele was increased in type 1 and gestational diabetes mellitus, and CT+TT genotypes showed decreased blood catalase activity for type 1 and increased activities for type 2 diabetic patients. The C111T polymorphism may implicate a very weak effect on blood catalase activity in different types of diabetes mellitus.  相似文献   

3.
Hydrogen peroxide plays a major role in the pathomechanism of diabetes mellitus and its main regulator is enzyme catalase.

The blood catalase and the C111T polymorphism in exon 9 was examined in type 1, type 2 and gestational diabetes mellitus.

Compared to the control group (104.7 ± 18.5 MU/l) significantly decreased (p < 0.001) blood catalase activities were detected in type 2 (71.2 ± 14.6 MU/l), gestational (68.5 ± 12.2 MU/l) diabetes mellitus and without change in type 1 (102.5 ± 26.9 MU/l). The blood catalase decreased (p = 0.043) with age for type 2 diabetics and did not change (p>0.063) for type 1, gestational diabetic patients and controls. Blood catalase showed a weak association with hemoglobin A1c for type 1 diabetic patients (r = 0.181, increasing).

The mutant T allele was increased in type 1 and gestational diabetes mellitus, and CT+TT genotypes showed decreased blood catalase activity for type 1 and increased activities for type 2 diabetic patients.

The C111T polymorphism may implicate a very weak effect on blood catalase activity in different types of diabetes mellitus.  相似文献   

4.
Manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) provide the primary antioxidant defense system. Impaired antioxidant defense increases oxidative stress and contributes to the development of type 2 diabetes and diabetic cardiovascular disease (CVD). We preformed a case-control study in Chinese type 2 diabetes patients, to determine if the MnSOD Val16Ala (T→C), GPX1 Pro198Leu (C→T), and CAT -262C/T (C→T) functional polymorphisms contribute to the development of type 2 diabetes or diabetic CVD. Patients with type 2 diabetes (n = 168) were divided into the non-CVD group (n = 83, >10 year since diagnosis) and CVD group (n = 85, history of ischemic CVD). Genotyping was performed using PCR-restriction fragment length polymorphism (PCR-RFLP) or PCR-based direct sequencing. The genotypic distribution in the non-CVD- and CVD-group and the clinical parameters in genotypic groups were not significantly different in the three polymorphic sites, respectively. Among eight genotypic combinations, the most common TT+CC+CC genotype (59.5%) was associated with higher triglyceride levels than the TT+CT+CC genotype, the second frequent one (14.9%; 1.77 ± 0.12 vs. 1.21 ± 0.11 mmol/l, P = 0.001), and all non-TT+CC+CC genotypes (40.5%; 1.77 ± 0.12 vs. 1.43 ± 0.12 mmol/l, P = 0.048). In the CVD group, significantly elevated triglyceride levels were also observed in patients with TT+CC+CC compared to patients with TT+CT+CC (2.00 ± 0.18 vs. 1.37 ± 0.16 mmol/l, P = 0.018) or non-TT+CC+CC genotypes (2.00 ± 0.18 vs. 1.65 ± 0.19 mmol/l, P = 0.070). The common MnSOD, GPX1, and CAT TT+CC+CC genotype may contribute to hypertriglyceridemia in Chinese patients with type 2 diabetes or diabetic CVD.  相似文献   

5.
Since the KCNB1 encoding Kv2.1 channel accounts for the majority of Kv currents modulating insulin secretion by pancreatic islet beta-cells, we postulated that KCNB1 is a plausible candidate gene for genetic variation contributing to the variable compensatory secretory function of beta-cells in type-2 diabetes (T2D). We conducted two studies, a case-control study and a cross-section study, to investigate the association of common single-nucleotide polymorphisms (SNPs) in KCNB1 with T2D and its linking traits. In the case-control study, we first examined the association of 20 tag SNPs of KCNB1 with T2D in a population with 226 T2D patients and non-diabetic subjects (screening study). We then identified the association in an enlarged population of 412 T2D patients and non-diabetic subjects (replication study). In the cross-sectional study, we investigated the linkage between the candidate SNP rs1051295 and T2D by comparing beta-cell function and insulin sensitivity among rs1051295 genotypes in a general population of 1051 subjects at fasting and after glucose loading (oral glucose tolerance tests, OGTT) in 84 fasting glucose impaired subjects, and several T2D-related traits. We found that among the 19 available tag SNPs, only the KCNB1 rs1051295 was associated with T2D (P = 0.027), with the rs1051295 TT genotype associated with an increased risk of T2D compared with genotypes CC (P = 0.009). At fasting, rs1051295 genotype TT was associated with a 9.8% reduction in insulin sensitivity compared to CC (P = 0.008); along with increased plasma triglycerides (TG) levels (TT/CC: P = 0.046) and increased waist/hip (W/H) ratio (TT/CC: P = 0.013; TT/TC: P = 0.002). OGTT confirmed that genotype TT exhibited reduced insulin sensitivity by 16.3% (P = 0.030) compared with genotype TC+CC in a fasting glucose impaired population. The KCNB1 rs1051295 genotype TT in the Chinese Han population is associated with decreased insulin sensitivity and increased plasma TG and W/H ratio, which together contribute to an increased risk for T2D.  相似文献   

6.
Apolipoprotein A-IV exhibits a common two-allele polymorphism in several human populations studied to date. Using isoelectric focusing and immunoblotting, we have analyzed plasmas from 188 non-insulin-dependent diabetic and 238 normoglycemic Hispanic individuals from the San Luis Valley, Colorado, to determine APOA4 genotype frequencies and to estimate the impact of the genotypes on quantitative traits. The frequencies of the two common alleles, APOA4*1 and APOA4*2, were 0.929 and 0.069, respectively, in normal subjects and 0.901 and 0.096, respectively, in diabetics. The third rare allele, APOA4*3, was detected sporadically in both groups. We studied the impact of APOA4 polymorphism on the levels of total plasma cholesterol, HDL cholesterol and its subfractions (HDL3 and HDL2), LDL cholesterol, triglycerides, glucose, and insulin. We observed no significant effect of the APOA4 polymorphism on any trait in diabetics. However, we did note a significant sex-specific effect in normoglycemic females on the level of total HDL cholesterol (p = 0.001) and its subfractions HDL2 (p = 0.043) and HDL3 (p = 0.001). The effect of the APOA4*2 allele in normal Hispanic females was to lower the total HDL, HDL2, and HDL3 cholesterol by 8.75 mg/dl, 2.37 mg/dl, and 5.36 mg/dl, respectively, compared to the common APOA4*1 allele.  相似文献   

7.

Retinopathy and nephropathy - current view

The Kumamoto and UKPDS studies of type-2 diabetes demonstrated that high glucose mean faster worsening for both diabetic retinopathy and nephropathy. However, why so many type-2 diabetics develop nephropathy but no retinopathy? Why so many type-2 diabetics have severe retinopathy and little or no nephropathy? The answer may be genetic susceptibility.

Hypothesis: the “flip-flop” effect of aldose reductase gene

When the CC genotype (high aldose reductase expression) of the (−106) polymorphism of the aldose reductase gene was linked to enhanced retinal susceptibility to hyperglycemia, it was expected that it would also accelerate nephropathy. As the case was the opposite, we now hypothesize that in the kidney, higher aldose reductase activity reduces susceptibility to hyperglycaemia by means of shifting glucose away from the synthesis of Transforming Growth Factor-Beta (TGF-β), a stimulator of mesangial expansion - the landmark of diabetic nephropathy. As the CT & TT genotypes (lower expression of aldose reductase) have effects that are the opposite of those of CC genotype, i.e. retinopathy-protection & nephropathy proneness, we have coined the term “flip-flop”, an acronym taken from electronics, meaning a system that is bi-stable.

If the “flip-flop” was confirmed - what then?

Those diabetics who are retinopathy-protected & nephropathy-prone (CT & TT), should not be given aldose reductase inhibitors (which could worsen nephropathy) but the new breed of TGF-β inhibitors. This might be a first step towards “genetic individualization of diabetes therapy”.  相似文献   

8.
NADPH: quinone oxidoreductase 1 (NQO1) and dihydronicotinamide riboside: quinone oxidoreductase 2 (NQO2) are cytosolic enzymes that catalyze reductive activation of carcinogens from cigarette smoke, such as nitrosamines and heterocyclic amines. These enzymes also protect cells against oxidative damage from reactive oxygen species. The present study investigated the associations of genetic variants of NQO1 609C>T and NQO2 -3423G>A polymorphisms with susceptibility to gastric cancer (GC) as well as their interactions with known risk factors in Kashmir valley. A case control study was performed in 303 subjects (108 GC and 195 healthy controls). All subjects were genotyped using polymerase chain reaction-restriction fragment length polymorphism method. Data were statistically analyzed by chi-square test and logistic regression model. The NQO1 609C>T TT genotype and T allele were significantly associated with increased risk for GC, whereas NQO2 -3423G>A polymorphism did not show any association with GC. Also, NQO1 609C>T TT genotype showed significant association with gastric adenocarcinoma. The interaction of NQO1/NQO2 genotypes with high consumption of salted tea, a known risk factor, did not further modulate the risk of GC. In conclusion, NQO1 609C>T polymorphism shows association with GC risk in Kashmir valley.  相似文献   

9.
目的:探讨陕西汉族人群中LKB1基因位点rs741765(380CT)及rs6510599(459GA)单核苷酸多态性(SNPs)与2型糖尿病遗传易感性及相关临床代谢指标的关系。方法:采用等位基因特异性引物PCR(SASP-PCR)对2型糖尿病患者130例及健康对照组100例进行LKB1基因内含子6 rs741765(380CT)及内含子1 rs6510599(459GA)两个位点进行基因多态性筛查,并测序鉴定,分析其基因多态性位点与2型糖尿病临床代谢指标关系。结果:rs741765(380CT)基因突变情况:2型糖尿病患者TT基因型频率显著高于健康对照组(P=0.023);TT基因2型糖尿病组中糖化血红蛋白水平及低密度脂蛋白胆固醇水平在型中明显升高(P=0.030;P=0.002);健康对照组中,空腹血糖水平在TT基因型中明显升高(P=0.011)。rs6510599(459GA)基因突变情况:AA基因型频率在2型糖尿病组及健康对照组间无显著性差异(P0.05);该基因位点与临床指标亦无相关性(P0.05)。结论:陕西汉族人群中LKB1基因内含子6 rs741765(380CT)及内含子1 rs6510599(459GA)存在基因多态性。LKB1基因内含子6 rs741765(380CT)基因多态性与2型糖尿病的发病有相关性。LKB1基因内含子1 rs6510599(459GA)基因多态性与2型糖尿病的发病无相关性。  相似文献   

10.
Genetic susceptibility may be responsible for high prevalence of type 2 diabetes worldwide. A common missense single nucleotide polymorphism, K121Q in the ectoenzyme nucleotide pyrophosphate phosphodiesterase (ENPP1) gene, has recently been associated with type 2 diabetes in Italian, South Indian, and American populations. The objective of this study was to investigate the possible role of K121Q polymorphism in ENPP1 gene with type 2 diabetes in North Indians. The genotype of the ENPP1/PC-1 K121Q polymorphism was determined using polymerase chain reaction-restriction fragment length polymorphism analysis for 328 T2DM patients and 326 non-diabetic participants. Anthropometric and clinical characteristics (Body mass index (BMI), glucose, total cholesterol, triglyceride, high-density lipoprotein cholesterol (HDL), Creatinine, HbA1c, and insulin levels) were measured using standard protocols. Their Chi-square analyses were used to test the significance differences in genotypic and allelic frequencies. Association studies were undertaken using the t test and logistic regression analyses. Our results revealed there was no significant difference in the genotypic distribution between T2DM patients and control subjects. The KK and KQ genotype frequencies were similar in T2DM cases and controls (60.7 and 39.3% in T2DM and 59.8 and 40.2% in controls). No subjects with the QQ genotype were found. Binary logistic regression analysis of data did not show any association of K121Q polymorphism with type 2 diabetes (OR; 0.97, 95% CI; 0.7–1.32, P = 0.82). No significant correlation among the BMI, WHR, BP, TG, TC, HDL-C, LDL-C, Glucose, HbA1c, Creatinine, and insulin indices (HOMA-IR) was observed in the individuals carrying KK and KQ genotypes. In conclusion, our results showed that ENPP1/PC-1 K121Q polymorphism is not associated with type 2 diabetes and related quantitative metabolic traits in North Indian Punjabi population.  相似文献   

11.
Catalase represents perhaps the most effective antioxidant defense in the body under conditions of increased oxidative stress, and rs1001179 (CAT-262C >T) is its most extensively studied gene polymorphism. Using an established PCR–RFLP method for genotyping, we examined the association of rs1001179 with glycated hemoglobin (HbA1c) and plasma lipids using univariate analyses with age, sex, body mass index (BMI), smoking, and alcohol abuse as covariates, in a group of dyslipidemic patients from northern Greece. Our results suggest that the TT genotype is a risk factor for increased HbA1c and plasma triglycerides, and that this association is modulated by the BMI and/or age of the patients.  相似文献   

12.
The ubiquitous form of the sodium–hydrogen exchanger, NHE1, is devoted to the regulation of intracellular pH and cell volume. In addition, NHE1 activity is stimulated by growth factors and increased NHE rates are found in both circulating and immortalized cells during diabetes or diabetic nephropathy. In this context, we searched for polymorphisms of the 5′-flanking regulatory region of NHE1 gene in subjects with type-I diabetes. We identified a C/T transition 696 bases upstream the translation initiation start site which disrupts a repeated palindromic GC sequence. The TT genotype was significantly more frequent in type-1 diabetics and may have functional importance. Genetic linkage between NHE1 and diabetes has been previously described in NOD mice strains with consequences on NHE rates. Hence, the polymorphism described hereby may act as a predisposition factor to type-I diabetes or to diabetic complications, and may be useful to investigate the genetic involvement of NHE1 in human pathophysiology.  相似文献   

13.
Catalase is the main regulator of hydrogen peroxide metabolism. In vitiligo patients there are conflicting data on its activity and no data on the effect of −262C>T polymorphism in the catalase gene. Blood catalase activity, −262C>T polymorphism and acatalasemia mutations were examined in 75 vitiligo patients and in 162 controls, in Hungary. We measured blood catalase activity and conducted analyses with PCR-SSCP, polyacrylamide gel electrophoresis and silver staining in combination with RFLP and nucleotide sequencing. Comparison of the wild (CC) genotype and the mutant (TT) genotype in the vitiligo patients revealed a non significant (P > 0.19) increase in blood catalase. Male controls with the CT genotype had significantly (P < 0.04) lower blood catalase activity than CC genotype controls. Female vitiligo patients with CC genotype had lower (P < 0.04) blood catalase than female controls. The frequency of wild genotype (CC) and C alleles is significantly (P < 0.04) decreased in Hungarian controls when compared to controls in Slovenia, Morocco, UK, Greece, Turkey, USA, China. The detection of a novel acatalasemia mutation (37C>T in exon 9) and the 113G>A (exon 9) mutation in Hungary are further proofs of genetic heterogeneity origin of acatalasemia mutations. In conclusion, the −262 C>T polymorphism has a reverse effect on blood catalase in vitiligo patients and in controls. In controls the mutant genotypes and alleles are more frequent in Hungary than in several other populations. The new acatalasemia mutations are further examples of heterogeneity of acatalasemia.  相似文献   

14.
Oxidative stress plays an important role in the pathogenesis of diabetes and its complications. Genetic variations of enzymes producing reactive oxygen species could change their activity, thus contributing to the susceptibility to oxidative stress. The aim of this study was to examine the role of the NADPH oxidase C242T polymorphism in the development of carotid atherosclerosis in patients with type 2 diabetes. 286 diabetic patients and 150 healthy controls were enrolled in the study. Carotid atherosclerosis was quantified ultrasonographically as carotid intima-media thickness, plaque score (0–6) and plaque type (1–5). Diabetic patients were divided into low and high risk groups based on ultrasound phenotypes of carotid atherosclerosis. Genotypes were determined by real-time PCR. Levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) were measured by enzyme-linked immunosorbent assay (ELISA). Diabetic patients demonstrated a statistically significant difference compared to healthy controls in the following parameters: age, BMI, waist circumference, smoking prevalence, glucose, triglyceride and 8-OHdG serum levels. Control subjects had significantly higher levels of HDL, LDL and total cholesterol than diabetics (p?<?0.001). The NADPH C242T polymorphism was not related with clinical characteristics, lipid parameters and 8-OHdG serum levels. We found no significant difference in the NADPH genotype distribution between diabetics and controls (p?=?0.19) nor between low and high risk subgroups of diabetics (mean CIMT: p?=?0.67; plaque score: p?=?0.49, plaque type: p?=?0.56). In the present study the NADPH C242T polymorphism was not associated with the degree of oxidative stress and carotid atherosclerosis. Further studies will show if it can be used as a genetic marker for carotid atherosclerosis in diabetic patients.  相似文献   

15.
We tested the hypotheses that catalase activity is modified by CAT single nucleotide polymorphisms (SNPs) (-262;-844), and by their interactions with oxidant exposures (coal dusts, smoking), lymphotoxin alpha (LTA, NcoI) and tumor necrosis factor (TNF, -308) in 196 miners. Erythrocyte catalase, superoxide dismutase, and glutathione peroxidase activities were measured. The CAT -262 SNP was related to lower catalase activity (104, 87 and 72 k/g hemoglobin for CC, CT and TT, respectively, p < 0.0001). Regardless of CAT SNPs, the LTA NcoI but not the TNF-308 SNP was associated with catalase activity (p = 0.04 and p = 0.8). CAT -262 T carriers were less frequent in highly exposed miners (OR = 0.39 [0.20-0.78], p = 0.007). In CAT -262 T carriers only, catalase activity decreased with high dust exposure (p = 0.01). Haplotype analyses (combined CAT SNPs) confirm these results. Results show that CAT -262 and LTA NcoI SNPs, and interaction with coal dust exposure, influenced catalase activity.  相似文献   

16.
Catalase decreases the high, toxic concentrations of hydrogen peroxide but it lets the physiological, low concentrations in the cells mainly for signaling purposes. Its decreased activity may contribute to development of several pathological conditions. Catalase mutations occur frequently in exon 9, these were examined with different, complicated and costly methods. The aim of the current study was to evaluate a method for screening of polymorphisms in catalase exon 9. We used the slab gel electrophoresis of PCR amplicons without denaturation and silver staining for visualization of the DNA bands. We detected extra DNA bands in the 400-800 bp region of the catalase exon 9. Their single stranded nature was proved with nucleotide sequence analyses, comparison with the standard SSCP, staining with Sybr Green II and Sybr Green I, ethidium bromide, no digestion with RFLP (BstX I), and digestion with plant nuclease. We used this method for examination of polymorphisms of catalase exon 9 in microcytic anemia and beta-thalassemia patients. The lowest blood catalase activities were detected in microcytic anemia and beta-thalassemia patients with the TT genotypes of the C111T polymorphism. This method was sensitive for detection of G113A acatalasemia mutation, but poorly detected C37T and G5A acatalasemia mutations.  相似文献   

17.
Serum cholesterol and high-density lipoprotein (HDL) cholesterol concentrations were measured in 192 diabetics (94 with juvenile-onset and 98 with maturity-onset diabetes) and 177 non-diabetic controls. Hb A1C, an index of blood sugar control, was also measured in the diabetics. Serum cholesterol concentrations were similar in all the diabetics and controls, but HDL cholesterol concentrations were lower in patients with maturity-onset diabetes than in those with juvenile-onset diabetes and controls. There was no correlation in diabetics between HDL cholesterol and Hb A1C. We conclude that HDL cholesterol concentrations are abnormally low in patients with maturity-onset diabetes but essentially normal in those with juvenile-onset diabetes. They are not related to diabetic control.  相似文献   

18.
目的:研究内蒙古地区汉族人群SLC30A8(solute carrier family 30,member 8)基因rsl3266634单核苷酸多态性(Single nucleotide polymorphism,SNP)的等位基因和基因型频率分布与2型糖尿病(Type 2 diabetes,T2DM)的相关性。方法:采用等位基因特异性聚合酶链式反应(AS-PCR),对222例内蒙古地区汉族人(其中T2DM组125例,正常对照NC组97例)rsl3266634进行基因分型。结果:T2DM组中rsl3266634的C等位基因频率、CC基因型频率分别为61.2%和28.4%,均显著高于NC组的53.1%和24.7%(P值均〈0.05);而T2DM组的TT基因型频率为6.4%,显著低于NC组的18.6%(P〈0.05)。C等位基因携带者患T2DM的风险是T等位基因的1.64倍(OR=1.64,95%CI=1.125-2.402)。结论:SLC30A8基因rsl3266634多态性位点的C等位基因可能是T2DM的风险等位基因,该位点C/T多态性与内蒙古地区汉族人群T2DM具有相关性,可能是内蒙古地区汉族人T2DM的易感基因之一。  相似文献   

19.
Esophageal cancer (EC) is a complex multifactorial disorder, where environmental and genetic factors play major role. NADPH:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2) are phase II cytosolic enzymes that catalyze metabolism of quinones, important in the detoxification of environmental carcinogens. A case-control study was performed to investigated the associations of NQO1 609C>T and NQO2 -3423G>A polymorphisms with susceptibility to EC in a high-risk Kashmiri population of India in 135 EC patients and 195 unrelated healthy controls using PCR-RFLP. We also performed a meta analysis of nine published studies (1,224 cases and 1,740 controls) on NQO1 609C>T and evaluated the association between the NQO1 609C>T polymorphisms and esophageal cancer risk. A significant difference in NQO1 609C>T and NQO2 -3423G>A genotype distribution between EC cases and corresponding controls groups was observed (OR = 2.65; 95 % CI = 1.29-5.42 and OR = 1.88; 95 % CI = 1.02-3.49 respectively). Further, gene-gene interaction showed significantly increased risk for esophageal adenocarcinoma with variant genotypes of NQO1 609C>T and NQO2 -3423G>A polymorphisms and interaction with environmental risk factors revealed pronounced risk of EC with NQO1 609C>T TT genotype in high salted tea users of Kashmir valley (OR = 3.72, 95 % CI = 0.98-14.19). Meta analysis of NQO 609C>T polymorphism also suggested association of the polymorphism with EC in Asians as well as Europeans. In conclusion, NQO1 609C>T and NQO2 -3423G>A genetic variations modulate risk of EC in high-risk Kashmir population.  相似文献   

20.
Glutathione S-transferase (GST) protects cells against oxidative stress. We evaluated the effect of genetic polymorphisms of the GST gene family on the risk of developing type-2 diabetes mellitus and on glycemic control. We also investigated the effects of smoking combined with these polymorphisms on type-2 diabetes mellitus risk. We enrolled 100 type-2 diabetes mellitus patients and 100 healthy controls matched for age, gender and origin, from the Sinai area of Egypt. Fasting serum glucose, HbA(1c) and lipid profiles were determined. Two polymorphisms were identified by multiplex PCR within the GST genes: GSTM1 and GSTT1. The proportion of the GSTT1- and GSTM1-null genotypes was significantly greater in diabetic patients when compared to controls. Patients carrying both null polymorphisms had a 3.17-fold increased risk of having type-2 diabetes mellitus compared to those with normal genotypes of these two genes (P = 0.009). Additionally, patients with the GSTT1-null genotype had higher levels of triglycerides and very low-density lipoprotein cholesterol compared to those with the GSTT1-present genotype. On the other hand, patients with the GSTM1- null genotype had significantly higher levels of HbA(1c) and significantly higher diastolic blood pressure compared to those with the GSTM1- present genotype. The interaction between these genotypes and smoking status was not significant. These results give evidence that the GSTT1- and GSTM1-null genotypes, alone or combined, are associated with increased risk of type-2 diabetes mellitus, regardless of smoking status. Only the GSTM1-null genotype had an effect on glycemic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号