首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monotopic glycosyltransferases (GTs) interact with membranes via electrostatic interactions. The N-terminal domain is permanently anchored to the membrane while the membrane interaction of the C-terminal domain is believed to be weaker so that it undergoes a functionally relevant conformational change upon donor or acceptor binding. Here, we studied the applicability of this model to the glycosyltransferase WaaG. WaaG is involved in the synthesis of lipopolysaccharides (LPS) in Gram-negative bacteria and was previously categorized as a monotopic GT. We analyzed the binding of WaaG to membranes by stopped-flow fluorescence and NMR diffusion experiments. We find that electrostatic interactions are required to bind WaaG to membranes while mere hydrophobic interactions are not sufficient. WaaG senses the membrane's surface charge density but there is no preferential binding to specific anionic lipids. However, the binding is weaker than expected for monotopic GTs but similar to peripheral GTs. Therefore, WaaG may be a peripheral GT and this could be of functional relevance in vivo since LPS synthesis occurs only when WaaG is membrane-bound. We could not observe a C-terminal domain movement under our experimental conditions.  相似文献   

2.
WaaG is a glycosyltransferase (GT) involved in the synthesis of the bacterial cell wall, and in Escherichia coli it catalyzes the transfer of a glucose moiety from the donor substrate UDP-glucose onto the nascent lipopolysaccharide (LPS) molecule which when completed constitutes the major component of the bacterium's outermost defenses. Similar to other GTs of the GT-B fold, having two Rossman-like domains connected by a short linker, WaaG is believed to undergo complex inter-domain motions as part of its function to accommodate the nascent LPS and UDP-glucose in the catalytic site located in the cleft between the two domains. As the nascent LPS is bulky and membrane-bound, WaaG is a peripheral membrane protein, adding to the complexity of studying the enzyme in a biologically relevant environment. Using specific 5-fluoro-Trp labelling of native and inserted tryptophans and 19F NMR we herein studied the dynamic interactions of WaaG with lipids using bicelles, and with the donor substrate. Line-shape changes when bicelles are added to WaaG show that the dynamic behavior is altered when binding to the model membrane, while a chemical shift change indicates an altered environment around a tryptophan located in the C-terminal domain of WaaG upon interaction with UDP-glucose or UDP. A lipid-bound paramagnetic probe was used to confirm that the membrane interaction is mediated by a loop region located in the N-terminal domain. Furthermore, the hydrolysis of the donor substrate by WaaG was quantified by 31P NMR.  相似文献   

3.
4.
The conformations of three synthetic peptide analogs containing the dPro-dPro-dXaa motif (dXaa = dThr, dGlu, dAsn) in aqueous solution were studied by a combination of NMR and molecular modeling simulations. The three compounds were identified from a random D-amino acid tripeptide library on the basis of their ability to either mimic or block the diuretic activity of neuropeptides of the insect kinin family. TOCSY and ROESY correlations, as well as abnormal secondary chemical shifts for protons on the D-proline residues were employed to obtain conformational ensembles consistent with the experimental NMR data for the three analogs using an in vacuo simulated annealing protocol. Similar secondary structures were found for the three molecules after refinement, in agreement with the similarities observed between their NMR spectra. Unrestrained molecular dynamics simulations with explicit water representation indicate that the structural motifs found in vacuo are stable in aqueous solution. The three analogs can be considered initiators of right-handed poly D-proline II helices, mirror images of the poly L-proline II left-handed helical motifs normally found in proline-rich proteins. The role of these secondary folds on binding of the analogs to the kinin receptors is discussed.  相似文献   

5.
The glycosyltransferase WaaG is involved in the synthesis of lipopolysaccharides that constitute the outer leaflet of the outer membrane in Gram-negative bacteria such as Escherichia coli. WaaG has been identified as a potential antibiotic target, and inhibitor scaffolds have previously been investigated. WaaG is located at the cytosolic side of the inner membrane, where the enzyme catalyzes the transfer of the first outer-core glucose to the inner core of nascent lipopolysaccharides. Here, we characterized the binding of WaaG to membrane models designed to mimic the inner membrane of E. coli. Based on the crystal structure, we identified an exposed and largely α-helical 30-residue sequence, with a net positive charge and several aromatic amino acids, as a putative membrane-interacting region of WaaG (MIR-WaaG). We studied the peptide corresponding to this sequence, along with its bilayer interactions, using circular dichroism, fluorescence quenching, fluorescence anisotropy, and NMR. In the presence of dodecylphosphocholine, MIR-WaaG was observed to adopt a three-dimensional structure remarkably similar to the segment in the crystal structure. We found that the membrane interaction of WaaG is conferred at least in part by MIR-WaaG and that electrostatic interactions play a key role in binding. Moreover, we propose a mechanism of anchoring WaaG to the inner membrane of E. coli, where the central part of MIR-WaaG inserts into one leaflet of the bilayer. In this model, electrostatic interactions as well as surface-exposed Tyr residues bind WaaG to the membrane.  相似文献   

6.
Viper venom hyaluronidase (VV-HYA) inhibitors have long been used as therapeutic agents for arresting the local and systemic effects caused during its envenomation. Henceforth, to understand its structural features and also to identify the best potential inhibitor against it the present computational study was undertaken. Structure-based homology modeling of VV-HYA followed by its docking and free energy-based ranking analysis of ligand, the MD simulations of the lead complex was also performed. The sequence analysis and homology modeling of VV-HYA revealed a distorted (β/α)8 folding as in the case of hydrolases family of proteins. Molecular docking of the resultant 3D structure of VV-HYA with known inhibitors (compounds 1–25) revealed the importance of molecular recognition of hotspot residues (Tyr 75, Arg 288, and Trp 321) other than that of the active site residues. It also revealed that Trp 321 of VV-HYA is highly important for mediating π–π interactions with ligands. In addition, the molecular docking and comparative free energy binding analysis was investigated for the VV-HYA inhibitors (compounds 1–25). Both molecular docking and relative free energy binding analysis clearly confirmed the identification of sodium chromoglycate (compound 1) as the best potential inhibitor against VV-HYA. Molecular dynamics simulations additionally confirmed the stability of their binding interactions. Further, the information obtained from this work is believed to serve as an impetus for future rational designing of new novel VV-HYA inhibitors with improved activity and selectivity.  相似文献   

7.
In order to develop promising cyclin dependent kinase 1 inhibitors, homology modeling, docking and molecular dynamic simulation techniques were applied to get insight into the functional and structural properties of cyclin dependent kinase 1 (CDK1). Since there is no reported CDK1 crystal structural data, the three dimensional structure of CDK1 was constructed based on homology modeling. An extensive dynamic simulation was also performed on a Flavopiridol-CDK1 complex for probing the binding pattern of Flavopiridol in the active site of CDK1. The binding modes of other inhibitors to CDK1 were also proposed by molecular docking. The structural requirement for developing more potent CDK1 inhibitors was obtained by the above-mentioned molecular simulations and pharmacophore modeling.  相似文献   

8.
In recent years, there has been a growing interest in developing bacterial peptide deformylase (PDF) inhibitors as novel antibiotics. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse PDF inhibitors which is useful for designing of potential antibiotics. Twenty one structurally diverse compounds were considered for the generation of quantitative pharmacophore model using HypoGen of Catalyst, further model was validated using 78 compounds. Pharmacophore model demonstrated the importance of two acceptors, one donor and one hydrophobic feature toward the biological activity. The inhibitors were also docked into the binding site of PDF to comprehend the structural insights of the active site. Combination of ligand and structure based methods were used to find the potential antibiotics.  相似文献   

9.
With the aid of receptor-oriented pharmacophore-based in silico screening, we established three pharmacophore maps explaining the binding model of hPNMT and a known inhibitor, SK&F 29661 (Martin et al., 2001). The compound library was searched using these maps. Nineteen selected candidate inhibitors of hPNMT were screened using STD-NMR and fluorescence experiments. An enzymatic activity assay based on HPLC was additionally performed. Consequently, three potential hPNMT inhibitors were identified, specifically, 4-oxo-1,4-dihydroquinoline-3,7-dicarboxylic acid, 4-(benzo[d][1,3]dioxol-5-ylamino)-4-oxobutanoic acid, and 1,4-diaminonaphthalene-2,6-disulfonic acid. These novel inhibitors were retrieved using Map II comprising one hydrogen bond acceptor, one hydrogen bond donor, one lipophilic feature, and shape constraints, including a hydrogen bond between Lys57 of hPNMT and a hydrogen bond donor of the inhibitor, and stacked hydrophobic interactions between the side-chain of Phe182 and an aromatic region of the inhibitor. Water-mediated interactions between Asn267 and Asn39 of hPNMT and the amide or amine group of three potent inhibitors were additional important features for hPNMT activity. The binding model presented here may be applied to identify inhibitors with higher potency. Moreover, our novel compounds are valuable candidates for further lead optimization of PNMT inhibitors.  相似文献   

10.
The present study describes efficient and facile syntheses of varyingly substituted 3-thioaurones from the corresponding 3-oxoaurones using Lawesson’s reagent and phosphorous pentasulfide. In comparison, the latter methodology was proved more convenient, giving higher yields and required short and simple methodology. The structures of synthetic compounds were unambiguously elucidated by IR, MS and NMR spectroscopy. All synthetic compounds were screened for their inhibitory potential against in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Molecular docking studies were also performed in order to examine their binding interactions with AChE and BChE human proteins. Both studies revealed that some of these compounds were found to be good inhibitors against AChE and BChE.  相似文献   

11.
Hu X  Norris AL  Baudry J  Serpersu EH 《Biochemistry》2011,50(48):10559-10565
NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The (15)N-(1)H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH-enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.  相似文献   

12.
The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways.  相似文献   

13.
The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix.  相似文献   

14.
Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.  相似文献   

15.
The enzyme FabH catalyzes the initial step of fatty acid biosynthesis via a type II fatty acid synthase. The pivotal role of this essential enzyme combined with its unique structural features and ubiquitous occurrence in bacteria has made it an attractive new target for the development of antibacterial and antiparasitic compounds. Three-dimensional quantitative structure-activity relationship (3D QSAR) studies such as comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) and docking simulations were conducted on a series of potent benzoylaminobenzoic acids. Docking studies were employed to position the inhibitors into the FabH active site to determine the probable binding conformation. A reasonable correlation between the predicated binding free energy and the inhibitory activity was found. CoMFA and CoMSIA were performed based on the docking conformations, giving q(2) of 0.637 and 0.697 for CoMFA and CoMSIA models, respectively. The predictive ability of the models was validated using a set of compounds that were not included in the training set and progressive scrambling test. Mapping the 3D QSAR models to the active site of FabH related that some important amino acid residues are responsible for protein-inhibitor interaction. These results should be applicable to the prediction of the activities of new FabH inhibitors, as well as providing structural understanding.  相似文献   

16.
We have performed molecular docking on quinazoline antifolates complexed with human thymidylate synthase to gain insight into the structural preferences of these inhibitors. The study was conducted on a selected set of one hundred six compounds with variation in structure and activity. The structural analyses indicate that the coordinate bond interactions, the hydrogen bond interactions, the van der Waals interactions as well as the hydrophobic interactions between ligand and receptor are responsible simultaneously for the preference of inhibition and potency. In this study, fast flexible docking simulations were performed on quinazoline antifolates derivatives as human thymidylate synthase inhibitors. The results indicated that the quinazoline ring of the inhibitors forms hydrophobic contacts with Leu192, Leu221 and Tyr258 and stacking interaction is conserved in complex with the inhibitor and cofactor.  相似文献   

17.
天冬氨酰蛋白酶(β-site amyloid precursor protein cleaving enzyme 1, BACE1)作为治疗阿尔兹海默症的潜在靶点,其抑制剂的开发已成为医学领域的重要研究方向。本文以59个氨基恶唑啉呫吨类BACE1抑制剂为研究对象,运用比较分子相似性指数(comparative molecular similarity index, CoMSIA)和分子对接方法,深入挖掘影响抑制剂活性的特征结构,以及抑制剂与BACE1间的结合模式和作用力类型,并以此为基础设计新型抑制剂并预测其活性。CoMSIA模拟结果表明,由立体场、静电场、疏水场和氢键供体场4个场组合建立的构效关系模型具有较强的预测能力,交叉验证相关系数Q2=0.48, 非交叉验证相关系数Rncv2=0.94, 外部预测相关系数Rpre2=0.85;通过分子对接,发现抑制剂占据了靶标的S3、S1和S2'位点,与BACE1之间的结合主要是通过氢键作用力和π-π堆积作用实现的;占据S2'位点的R取代基是立体场、静电场和疏水场影响的敏感区域,氨基恶唑啉核心官能团是氢键供体场的敏感区域。基于以上分析获得的抑制剂特征结构信息及其与蛋白质受体的作用机制,成功设计出了新的分子并预测了抑制活性。实验所得模型和信息,为后续新型BACE1抑制剂的结构优化和改造提供了重要理论依据  相似文献   

18.
A library of twelve quinazoline-triazole hybrid compounds were designed, synthesized and evaluated as a novel class of acetylcholinesterase inhibitors to treat Alzheimer’s disease (AD). The biological assay results demonstrated the ability of several hybrid compounds to inhibit AChE enzyme (IC50 range = 0.2–83.9 µM). To understand the high potential activity of these compounds, molecular docking simulations were performed to get better insights into the mechanism of binding of quinazoline-triazole hybrid compounds. As expected, compounds 8a and 9a-b bind to both catalytic anionic site (CAS) and peripheral anionic site (PAS) in the active site of AChE enzyme, which implicates that these compounds could act as dual binding site inhibitors. These compounds were not cytotoxic and they also displayed appropriated physicochemical as well as pharmacokinetic profile to be developed as novel anti-AD drug candidates.  相似文献   

19.
A series of novel cholinesterase inhibitors based on 2-substituted 6-fluorobenzo[d]thiazole were synthesised and characterised by IR, 1H, 13C and 19F NMR spectroscopy and HRMS. Purity was checked by elemental analyses. The novel carbamates were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The toxicity of the most active compounds was investigated using a standard in vitro test with HepG2 cells, and the ratio between biological activity and toxicity was determined. In addition, the toxicity of the most active compounds was evaluated against MCF7 cells using the xCELLigence system. Structure–activity relationships reflecting the dependence of cholinesterase inhibitors on the lipophilicity of the compounds as well as on the Taft polar and steric substituent constants are discussed. The specific orientation of the inhibitors in the binding site of acetylcholinesterase was determined using molecular docking of the most active compound.  相似文献   

20.
In the present contribution, multicomplex-based pharmacophore studies were carried out on the structural proteome of Plasmodium falciparum 1-deoxy-D -xylulose-5-phosphate reductoisomerase. Among the constructed models, a representative model with complementary features, accountable for the inhibition was used as a primary filter for the screening of database molecules. Auxiliary evaluations of the screened molecules were performed via drug-likeness and molecular docking studies. Subsequently, the stability of the docked inhibitors was envisioned by molecular dynamics simulations, principle component analysis, and molecular mechanics-Poisson-Boltzmann surface area-based free binding energy calculations. The stability assessment of the hits was done by comparing with the reference (beta-substituted fosmidomycin analog, LC5) to prioritize more potent candidates. All the complexes showed stable dynamic behavior while three of them displayed higher binding free energy compared with the reference. The work resulted in the identification of the compounds with diverse scaffolds, which could be used as initial leads for the design of novel PfDXR inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号