首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Anaerobe》1999,5(3-4):221-227
The anaerobic infections most frequently found in the oral cavity are gingivoperiodontal diseases and pulpal and periapical infections. Gingivitis and adult periodontitis are the most frequent forms. In adult periodontitis the subgingival microbiota are complex and there is a prevalence of Porphyromonas gingivalis, Prevotella intermedia,Prevotella nigrescens , Actinobacillus actinomycetemcomitans, Bacteroides forsythus,Peptostreptococcus micros , Campylobacter rectus, and species of Fusobacterium, Eikenella andTreponema .The microflora associated with peri-implant infections are similar to the microflora found in periodontal diseases, particularly in partially edentulous patients. Implant placement is therefore not recommended in patients presenting with uncontrolled periodontal disease.Likewise, there is a similarity between the genera identified in periodontal pockets and infected root canals, and in periapical infections. However, some species are more prevalent than others in both infections. The following were predominantly observed inside the root canals: Prevotella intermedia, Prevotella nigrescens,Peptostreptococcus anaerobius , Peptostreptococcus micros, Eubacterium lentum, Eubacterium alactolyticum and Porphyromonas endodontalis, with strong associations among some species.Pericoronaritis is another infection associated with anaerobic Gram-negative bacilli and treponeme. There are a great number of methods for microbiological diagnosis, and treatment of some oral infections depends on close interaction between the microbiologist and the dentist.  相似文献   

2.
Periodontitis is an infectious disease that causes the inflammatory destruction of the tooth-supporting (periodontal) tissues, caused by polymicrobial biofilm communities growing on the tooth surface. Aggressive periodontitis is strongly associated with the presence of Aggregatibacter actinomycetemcomitans in the subgingival biofilms. Nevertheless, whether and how A. actinomycetemcomitans orchestrates molecular changes within the biofilm is unclear. The aim of this work was to decipher the interactions between A. actinomycetemcomitans and other bacterial species in a multi-species biofilm using proteomic analysis. An in vitro 10-species “subgingival” biofilm model, or its derivative that included additionally A. actinomycetemcomitans, were anaerobically cultivated on hydroxyapatite discs for 64 h. When present, A. actinomycetemcomitans formed dense intra-species clumps within the biofilm mass, and did not affect the numbers of the other species in the biofilm. Liquid chromatography-tandem mass spectrometry was used to identify the proteomic content of the biofilm lysate. A total of 3225 and 3352 proteins were identified in the biofilm, in presence or absence of A. actinomycetemcomitans, respectively. Label-free quantitative proteomics revealed that 483 out of the 728 quantified bacterial proteins (excluding those of A. actinomycetemcomitans) were accordingly regulated. Interestingly, all quantified proteins from Prevotella intermedia were up-regulated, and most quantified proteins from Campylobacter rectus, Streptococcus anginosus, and Porphyromonas gingivalis were down-regulated in presence of A. actinomycetemcomitans. Enrichment of Gene Ontology pathway analysis showed that the regulated groups of proteins were responsible primarily for changes in the metabolic rate, the ferric iron-binding, and the 5S RNA binding capacities, on the universal biofilm level. While the presence of A. actinomycetemcomitans did not affect the numeric composition or absolute protein numbers of the other biofilm species, it caused qualitative changes in their overall protein expression profile. These molecular shifts within the biofilm warrant further investigation on their potential impact on its virulence properties, and association with periodontal pathogenesis.  相似文献   

3.
The aim of this study was to investigate the impact of early colonizing species on the structure and the composition of the bacterial community developing in a subgingival 10-species biofilm model system. The model included Streptococcus oralis, Streptococcus anginosus, Actinomycesoris, Fusobacterium nucleatum subsp. nucleatum, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Based on literature, we considered Streptococcus oralis, Streptococcus anginosus, and Actinomyces oris as early colonizers and examined their role in the biofilms by either a delayed addition to the consortium, or by not inoculating at all the biofilms with these species. We quantitatively evaluated the resulting biofilms by real-time quantitative PCR and further compared the structures using confocal laser scanning microscopy following fluorescence in situ hybridisation. The absence of the early colonizers did not hinder biofilm formation. The biofilms reached the same total counts and developed to normal thickness. However, quantitative shifts in the abundances of individual species were observed. In the absence of streptococci, the overall biofilm structure appeared looser and more dispersed. Moreover, besides a significant increase of P. intermedia and a decrease of P. gingivalis , P. intermedia appeared to form filamented long chains that resembled streptococci. A. oris, although growing to significantly higher abundance in absence of streptococci, did not have a visible impact on the biofilms. Hence, in the absence of the early colonizers, there is a pronounced effect on P. intermedia and P. gingivalis that may cause distinct shifts in the structure of the biofilm. Streptococci possibly facilitate the establishment of P. gingivalis into subgingival biofilms, while in their absence P. intermedia became more dominant and forms elongated chains.  相似文献   

4.
Chronic periodontitis is a highly prevalent endogenous polymicrobial disease. To better understand the etiology of the disease a quantitative approach is mandatory and real-time PCR is the molecular technique currently preferred to achieve this purpose. Taking into account that such a kind of study is still scarce, we aimed to evaluate the association between periodontal microbiota and chronic periodontitis. A total of 60 low-income age-matched female adults, 30 with chronic periodontitis and 30 without periodontal disease, were enrolled. DNA obtained from subgingival specimens was used for quantification of Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia by real-time PCR. A. actinomycetemcomitans, E. corrodens, and F. nucleatum were detected in all subjects, P. gingivalis was observed in 70.0% and 46.6% and P. intermedia in 90.0% and 80.0% of chronic periodontitis patients and periodontally healthy subjects, respectively. P. gingivalis mean count was significantly higher in patients with chronic periodontitis than in periodontally healthy individuals. Accurate detection and quantification of five putative periodontal pathogens was feasible using a simple and fast real-time PCR protocol. Although P. gingivalis and P. intermedia have been found more commonly in chronic periodontitis patients, no statistical difference was observed between periodontally diseased and healthy groups. Quantitative data indicated association between P. gingivalis and chronic periodontitis. However, because of its uneven distribution, it should not be solely taken as a marker of periodontal status.  相似文献   

5.
6.
To culture facultative and strict anaerobic bacteria is a well-established method for analyzing subgingival plaque samples. Micro-IDent® and micro-IDent® Plus (HAIN Lifescience GmbH, Nehren, Germany) tests are two commercially available rapid PCR-based methods for the identification and quantification of putative periodontopathogen bacteria. In this study, we compared these commercial PCR-based hybridization methods with conventional anaerobic culture technique. A total of 36 subgingival plaque samples were collected from periodontal pockets of pregnant women with chronic localized periodontitis. Aliquots of these samples were evaluated with species-specific probes provided by micro-IDent® and micro-IDent® Plus tests simultaneously, and from the same samples anaerobic and capnophylic bacteria were cultured on selective media. The overall agreement between both methods was excellent for Eubacterium nodatum, Tannerella forsythia and Porphyromonas gingivalis (97–92%), fair for Capnocytophaga sp, Eikenella corrodens, Actinobacillus actinomycetemcomitans, and Prevotella intermedia (91–89%) and poor for Fusobacterium nucleatum, Parvimonas micra (Micromonas micros), and Campylobacter rectus (86–78%). Discrepancies in the results may be explained by inability of culture method to distinguish between closely related taxa (e.i P. intermedia/Prevotella. nigrescens), and problems of keeping periodontopathogen bacteria viable, which is required for successful detection by standard culture method. Nucleic acid-based methods may replace cultivation method as frequently used methods in microbiological diagnosis of progressive periodontitis, thus micro-IDent® andmicro-IDent® Plus tests can be recommended where culture of periodontopathogenic bacteria is not performed in routine microbiology laboratories to analyze subgingival plaque samples.  相似文献   

7.

Background and Objective

The immune and infectious alterations occurring in periodontitis have been shown to alter the development and severity of cardiovascular disease. One of these relationships is the translocation of oral bacteria to atheroma plaques, thereby promoting plaque development. Thus, the aim of this study was to assess, by 16s cloning and sequencing, the microbial diversity of the subgingival environment and atheroma plaques of patients concomitantly suffering from periodontitis and obstructive coronary artery atherosclerosis (OCAA).

Methods

Subgingival biofilm and coronary balloons used in percutaneous transluminal coronary angioplasty were collected from 18 subjects presenting with generalized moderate to severe periodontitis and OCAA. DNA was extracted and the gene 16S was amplified, cloned and sequenced.

Results

Significant differences in microbial diversity were observed between both environments. While subgingival samples mostly contained the phylum Firmicutes, in coronary balloons, Proteobacteria (p<0.05) was predominant. In addition, the most commonly detected genera in coronary balloons were Acinetobacter, Alloprevotella, Pseudomonas, Enterobacter, Sphingomonas and Moraxella, while in subgingival samples Porphyromonas, Filifactor, Veillonella, Aggregatibacter and Treponema (p<0.05) were found. Interestingly, 17 identical phylotypes were found in atheroma and subgingival samples, indicating possible bacterial translocation between periodontal pockets and coronary arteries.

Conclusion

Periodontal pockets and atheromatous plaques of cardiovascular disease patients can present similarities in the microbial diversity.  相似文献   

8.
The intestinal microbiota plays an important role in maintaining the health of its host, including human and nonhuman primates. Little is known about the intestinal bacterial composition of the Sichuan snub-nosed monkey (Rhinopithecus roxellana), which has been classified as Endangered on the International Union for Conservation of Nature Red List since 2003. We evaluated the fecal bacterial compositions of 11 Sichuan snub-nosed monkeys, including six young captive individuals (one sample from each), three adult captive individuals (four samples each), and two adult provisioned free-ranging individuals (four samples each). We also quantified fecal Bacteroides vulgatus, Bifidobacterium spp., and Lactobacillus spp., which are defined as probiotics in humans, using real-time polymerase chain reaction. We identified five major phyla in the collected samples, including Firmicutes (32.4 %), Bacteroidetes (14.7 %), Verrucomicrobia (8.8 %), Actinobacteria (4.4 %), and unclassified microbacteria (39.7 %). Fecal bacteria composition varied with age and different seasons. The fecal bacterial composition of the captive monkeys was less variable than that of provisioned free-ranging monkeys. B. vulgatus amounts were almost 100 times higher in the provisioned free-ranging monkeys (1012) than in the captive monkeys (1010). Our results provide an initial catalogue of gut microbiota in the Sichuan snub-nosed monkey, which helps to enrich our knowledge of gut microbiota in nonhuman primates.  相似文献   

9.
B Biyikoğlu  A Ricker  PI Diaz 《Anaerobe》2012,18(4):459-470
Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.  相似文献   

10.
11.
Abstract

The objective of this work was to develop a subgingival biofilm model using a stirred bioreactor. Discs of bovine teeth were adapted to a stirred bioreactor filled with a culture medium containing bacterial species associated with periodontal health or disease. After anaerobic incubation, the biofilms growing on the substratum surfaces were collected and analyzed. The mean number of Colony-forming Units (CFUs) varied, but with no difference between 3 and 7?days of biofilm formation (p?>?0.05). Scanning Electron Microscopy (SEM) analysis showed a uniform biofilm layer covering the cement layer of the root surface containing bacteria with diverse morphology. In checkerboard DNA-DNA hybridization, bacterial species were identified in both biofilms. In conclusion, a subgingival biofilm model was developed using a stirred bioreactor, allowing the in vitro reproduction of complex microbial communities. This is an advanced model that may be useful to mimic complex clinical periodontal biofilms.  相似文献   

12.
ObjectivesDental caries disproportionately affects disadvantaged subjects. This study hypothesized that there were greater caries extent and higher levels of caries-associated and anaerobic subgingival bacterial species in oral samples of Hispanic and immigrant children compared with non-Hispanic and US born children.MethodsChildren from a school-based dental clinic serving a community with a large Hispanic component were examined, and the extent of caries was recorded. Microbial samples were taken from teeth and the tongues of children. Samples were analyzed using DNA probes to 18 oral bacterial species.ResultsSeventy five children were examined. Extent of caries increased with child age in immigrant, but not in US born or Hispanic children. There were no differences in the microbiota based on ethnicity or whether the child was born in US or not. There was a higher species detection frequency from teeth than tongue samples. Levels of Streptococcus mutans and other Streptococcus spp increased with caries extent. Prevotella intermedia, Tannerella forsythia and Selenomonas spp were detected at low levels in these children.ConclusionsWe conclude that, while there was a high rate of dental caries in disadvantaged school children, there were no differences in the caries-associated microbiota, including S. mutans, based on ethnicity or immigration status. Furthermore, while anaerobic subgingival, periodontal pathogens were also detected in children, there was no difference in species detection based on ethnicity or immigration status. Increased levels of streptococci, including S. mutans, however, were detected with high caries levels. This suggested that while it is beneficial to target preventive and treatment programs to disadvantaged populations, there is likely no additional benefit to focus on subgroups within a population already at high risk for dental disease.  相似文献   

13.
Determining the composition and function of subgingival dental plaque is crucial to understanding human periodontal health and disease, but it is challenging because of the complexity of the interactions between human microbiomes and human body. Here, we examined the phylogenetic and functional gene differences between periodontal and healthy individuals using MiSeq sequencing of 16S rRNA gene amplicons and a specific functional gene array (a combination of GeoChip 4.0 for biogeochemical processes and HuMiChip 1.0 for human microbiomes). Our analyses indicated that the phylogenetic and functional gene structure of the oral microbiomes were distinctly different between periodontal and healthy groups. Also, 16S rRNA gene sequencing analysis indicated that 39 genera were significantly different between healthy and periodontitis groups, and Fusobacterium, Porphyromonas, Treponema, Filifactor, Eubacterium, Tannerella, Hallella, Parvimonas, Peptostreptococcus and Catonella showed higher relative abundances in the periodontitis group. In addition, functional gene array data showed that a lower gene number but higher signal intensity of major genes existed in periodontitis, and a variety of genes involved in virulence factors, amino acid metabolism and glycosaminoglycan and pyrimidine degradation were enriched in periodontitis, suggesting their potential importance in periodontal pathogenesis. However, the genes involved in amino acid synthesis and pyrimidine synthesis exhibited a significantly lower relative abundance compared with healthy group. Overall, this study provides new insights into our understanding of phylogenetic and functional gene structure of subgingival microbial communities of periodontal patients and their importance in pathogenesis of periodontitis.  相似文献   

14.
Although the mature dental biofilm composition is well studied, there is very little information on the earliest phase of in vivo tooth colonization. Progress in dental biofilm collection methodologies and techniques of large-scale microbial identification have made new studies in this field of oral biology feasible. The aim of this study was to characterize the temporal changes and diversity of the cultivable and noncultivable microbes in the early dental biofilm. Samples of early dental biofilm were collected from 11 healthy subjects at 0, 2, 4, and 6 h after removal of plaque and pellicle from tooth surfaces. With the semiquantitative Human Oral Microbiome Identification Microarray (HOMIM) technique, which is based on 16S rRNA sequence hybridizations, plaque samples were analyzed with the currently available 407 HOMIM microbial probes. This led to the identification of at least 92 species, with streptococci being the most abundant bacteria across all time points in all subjects. High-frequency detection was also made with Haemophilus parainfluenzae, Gemella haemolysans, Slackia exigua, and Rothia species. Abundance changes over time were noted for Streptococcus anginosus and Streptococcus intermedius (P = 0.02), Streptococcus mitis bv. 2 (P = 0.0002), Streptococcus oralis (P = 0.0002), Streptococcus cluster I (P = 0.003), G. haemolysans (P = 0.0005), and Stenotrophomonas maltophilia (P = 0.02). Among the currently uncultivable microbiota, eight phylotypes were detected in the early stages of biofilm formation, one belonging to the candidate bacterial division TM7, which has attracted attention due to its potential association with periodontal disease.  相似文献   

15.
Fusobacterium nucleatum is one of the most abundant gram-negative bacilli colonizing the subgingival plaque and closely associated with periodontal disease. However it is unclear whether F. nucleatum is involved in gingival inflammation under orthodontic appliance. A novel adhesin, FadA, which is unique to oral Fusobacteria, is required for F. nucleatum binding and invasion to epithelial cells and thus may play an important role in colonization of Fusobacterium in the host. In this study, we evaluated the prevalence of F. nucleatum and its virulence factor FadA adhesion gene (fadA) in 169 subgingival biofilm samples from 55 cases of gingivitis patients with orthodontic appliances, 49 cases of gingivitis patients without orthodontic treatment, 35 cases of periodontitis patients and 30 cases of periodontally healthy people via PCR. The correlations between the F. nucleatum/fadA and gingivitis index(GI)was also analyzed. The detection rate of F. nucleatum/fadA in periodontitis group and non-orthodontic gingivitis group was higher than the other two groups (p<0.01) while it was higher in orthodontic gingivitis group than in health people (p<0.05). An obviously positive correlation was observed between the prevalence of F. nucleatum/fadA and GI. F. nucleatum carrying fadA may be more closely related to the development of gingivitis and periodontal disease compared with orthodontic gingivitis.  相似文献   

16.
Periodontal disease is a chronic infectious disease, which is characterized by the damaged dental hard tissue by lactic acid generated by microorganisms after the fermentation of carbohydrates rich diet. The risk of periodontal disease is known to be higher in diabetic patients. We compared the diversity of five commonly occurring dental bacteria including Porphyromonas gingivalis, Tannerella forsythia, Capnocytophaga ochracea, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans in 14 type-2 diabetic patients and equal numbers of healthy controls. The subgingival samples were collected using sterile paper points. We used 16S rRNA sequence specific primers for PCR-based identification of dental bacteria. Our results showed that A. actinomycetemcomitans was completely absent in control subjects but present in 43% of diabetic patients. C. ochracea was highly prevalent in diabetic patients (100%) as compared to controls (28.5%). The frequency of other three bacterial species was also higher in diabetic patients than control subjects. These findings indicate that dental bacteria are highly prevalent in subgingival pockets of diabetic patients. Therefore, proper monitoring of diabetic patients for dental care is important to prevent bacterial growth and its sequela in risky individuals. Further case-control studies using larger sample size would help in validating the association between oral diseases and diabetes.  相似文献   

17.
Oral malodor is considered to originate primarily from tongue microbiota populations. However, the relationship between oral malodor and tongue microbiota remains unclear. In this study, tongue periodontal pathogens were analyzed via real-time PCR, and the association between oral malodor and tongue periodontal pathogens, including Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, Prevotella nigrescens and Treponema denticola, was examined. The subject population consisted of 29 individuals with and 10 healthy persons without oral malodor. Oral malodor was assessed by organoleptic test and volatile sulfur compound (VSC) levels as measured by gas chromatography. Real-time PCR was conducted for anaerobes in tongue biofilm samples employing a LightCycler system; furthermore, bacterial proportion served as a quantitative parameter. Among the five anaerobes, only T. forsythia displayed higher proportions in malodor subjects than corresponding values in healthy controls. Proportions of P. intermedia and P. nigrescens correlated strongly with hydrogen sulfide concentration. Proportions of P. gingivalis and P. nigrescens also exhibited strong correlation with methyl mercaptan concentration. The correlation coefficient between the proportion of the total of the five anaerobes and total VSC level (r = 0.88) was greater than that between bacterial proportion and organoleptic score (r = 0.29). When a linear regression analysis was performed utilizing the proportion of each of the five periodontal pathogens as an independent variable, the explanatory power of these independent variables revealed 81% for total VSC level and 16% for organoleptic score. These results suggest that these five periodontal pathogens on tongue dorsa may contribute greatly to VSC production.  相似文献   

18.
Polycystic ovary syndrome (PCOS) is a hormonal disorder of women that not only is the leading cause of infertility but also shows a reciprocal link with oral health. This study aimed to investigate the hypothesis that the levels of putative periodontal pathogens in saliva and their antibody response in serum are elevated in PCOS, compared to systemic health. A total of 125 women were included in four groups; 45 women with PCOS and healthy periodontium, 35 women with PCOS and gingivitis, 25 systemically and periodontally healthy women, 20 systemically healthy women with gingivitis. Salivary levels of seven putative periodontal pathogens were analyzed by quantitative real-time polymerase chain reaction and serum antibody levels were analyzed by ELISA. In women with PCOS, salivary Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus oralis and Tannerella forsythia levels were higher than matched systemically healthy women, particularly in the case of gingivitis. Aggregatibacter actinomycetemcomitans and Treponema denticola levels were similar among study groups. The presence of PCOS also enhanced P. gingivalis, Prevotella intermedia and S. oralis serum antibody levels, when gingivitis was also present. Gingival inflammation correlated positively with levels of the studied taxa in saliva, particularly in PCOS. The presence of P. gingivalis and F. nucleatum in saliva also exhibited a strong positive correlation with the corresponding serum antibody levels. In conclusion, as an underlying systemic endocrine condition, PCOS may quantitatively affect the composition of oral microbiota and the raised systemic response to selective members of this microbial community, exerting a confounding role in resultant gingival inflammation and periodontal health. The most consistent effect appeared to be exerted on P. gingivalis.  相似文献   

19.
《Anaerobe》1999,5(3-4):229-235
This paper reviews our recent studies of the microbiota and host response of initial periodontitis. Understanding the initial stages of periodontitis will allow appropriate early treatment and prevention strategies. Out studies aimed to determine the major bacterial species that differentiated initial periodontitis from health, and evaluate whether subjects with initial periodontitis differed in serum IgG reactivity to putative initial periodontitis pathogens compared with healthy subjects. Initial periodontitis was characterized clinically using longitudinal periodontial attachment level measurements. Progressing periodontal loss was detected at interproximal (initial periodontitis), and buccal (progressing recession) locations from the study population of minimally periodontally diseased subjects. Initial periodontitis was characterized microbiologically by elevated proportions of Bacteroides forsythus, Selenomonas noxia and Campylobacter rectus when compared with non-periodontitis sites. The immunological checkerboard assay did not detect differences in serum IgG reactivity among healthy, gingivitis or initial periodontitis subjects, or changes in reactivity co-incident with detection of initial peridontitis. Clinical, microbiological and immunological characterization of initial periodontitis was consistent with infection-associated Gram-negative anaerobic periodontal species. Progressing recession sites were colonized byActinomyces and Streptococcus species, as were healthy sites. Progressing recession sites demonstrated periodontal loss that appeared unrelated to infection and appeared to be consistent with a traumatic tooth brushing etiology. Different types of lesions will require different approaches to therapy and prevention.  相似文献   

20.
Periodontitis is an infectious inflammatory disease that results in the destruction of the tooth-supporting (periodontal) tissues. The Gram-negative anaerobic species Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, (also known as the “red complex” species) are highly associated with subgingival biofilms at periodontitis-affected sites. A major chemokine produced by the gingival epithelium in response to biofilm challenge, is interleukin (IL)-8. The aim of this in vitro study was to investigate the relative effect of the “red complex” species as constituents of subgingival biofilms, on the regulation of IL-8 by gingival epithelia. Multi-layered organotypic human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its 7-species variant, excluding the “red complex”. IL-8 gene expression and secretion analyses were performed by qPCR and ELISA, respectively. After 3 h, both biofilms up-regulated IL-8 gene expression, but the presence of the “red complex” resulted in 3-fold greater response. IL-8 secretion was also up-regulated by both biofilms, with no differences between them. After 24 h, the 10-species biofilm reduced IL-8 secretion to 50% of the control, but this was not affected when the “red complex” was absent. In conclusion, as part of biofilms, “red complex” species differentially regulate IL-8 in gingival epithelia, potentially affecting the chemotactic responses of the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号