首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lymphocyte development is controlled by dynamic repression and activation of gene expression. These developmental programs include the ordered, tissue-specific assembly of Ag receptor genes by V(D)J recombination. Changes in gene expression and the targeting of V(D)J recombination are largely controlled by patterns of epigenetic modifications imprinted on histones and DNA, which alter chromatin accessibility to nuclear factors. An important component of this epigenetic code is methylation of histone H3 at lysine 9 (H3K9me), which is catalyzed by histone methyltransferases and generally leads to gene repression. However, the function and genetic targets of H3K9 methyltransferases during lymphocyte development remain unknown. To elucidate the in vivo function of H3K9me, we generated mice lacking G9a, a major H3K9 histone methyltransferase, in lymphocytes. Surprisingly, lymphocyte development is unperturbed in G9a-deficient mice despite a significant loss of H3K9me2 in precursor B cells. G9a deficiency is manifest as modest defects in the proliferative capacity of mature B cells and their differentiation into plasma cells following stimulation with LPS and IL-4. Precursor lymphocytes from the mutant mice retain tissue- and stage-specific control over V(D)J recombination. However, G9a deficiency results in reduced usage of Iglambda L chains and a corresponding inhibition of Iglambda gene assembly in bone marrow precursors. These findings indicate that the H3K9me2 epigenetic mark affects a highly restricted set of processes during lymphocyte development and activation.  相似文献   

2.
淋巴细胞是哺乳动物唯一能发生体细胞基因组变化的一类细胞,淋巴细胞在发育过程中通过V(D)J重组获得成熟的特异的抗原受体基因,实现了免疫细胞抗原识别惊人的多样性.关于V(D)J重组的调控机制一直是免疫学研究的重要问题,然而直到将表观遗传学研究引入这一领域,综合遗传学和表观遗传学的研究才真正揭示V(D)J重组精细的调控机制.综述了新近发现的V(D)J重组过程中重要的表观遗传学调控机制,如CpG甲基化,组蛋白修饰,核小体重塑及核拓扑学变化.  相似文献   

3.
4.
5.
6.
7.
Ono SJ  Zhou G  Tai AK  Inaba M  Kinoshita K  Honjo T 《FEBS letters》2000,467(2-3):268-272
The complete humoral response to foreign antigen depends upon two distinct recombination events within the heavy chain locus of immunoglobulin. The first recombination event takes place in what will become the antigen combining site of the antibody molecule, encoded by V, D and J segments. The second recombination event involves the looping-out of large spans of DNA which separate the various clusters of heavy chain exons which define the different immunoglobulin isotypes, or classes. While a great deal has been learned about the nature of the VDJ recombinase, very little is known about the nature of the class-switch recombinase. Using a cell system where class-switch recombination occurs primarily to the IgA locus, we have looked for stimulus-dependent changes in the chromatin structure of the IgA locus which might result from interactions between components of the recombinase and cis-elements within the region. We present evidence that strongly suggests that the class-switch recombinase interacts between the Ialpha and Calpha exons of IgA, just upstream of the highly reiterated DR1 and DR2 elements. However, although multiple potential SMAD-4 sites are located precisely within the DNase I hypersensitive site and 160 bp upstream of that site, we failed to detect any evidence of DNA/protein interactions near the hypersensitive site. Moreover, recombinant SMAD-3/4 proteins fail to interact with these sites with appreciable affinity in vitro. These data suggest that some other structural alteration at this site (e.g. RNA/DNA hybrid) may mediate the nuclease sensitivity.  相似文献   

8.
9.
10.
Although V(D)J recombination is thought to be regulated by changes in the accessibility of chromatin to the recombinase machinery, the mechanisms responsible for establishing "open" chromatin are poorly understood. We performed a detailed study of the acetylation status of histones associated with 11 V(H) gene segments, their flanking regions, and various intergenic elements during B-cell development and ontogeny, when V(D)J recombination is highly regulated. Histone H4 shows higher and more-regulated acetylation than does histone H3 in the V(H) locus. In adult pro-B cells, V(H) gene segments are acetylated prior to V(D)J rearrangement, with higher acetylation associated with J(H)-distal V(H) gene segments. While large regions of the V(H) locus have similar patterns of histone acetylation, acetylation is narrowly confined to the gene segments, their flanking promoters, and recombinase signal sequence elements. Thus, histone acetylation in the V(H) locus is both locally and globally regulated. Increased histone acetylation accompanies preferential recombination of J(H)-proximal V(H) gene segments in early B-cell ontogeny, and decreased histone acetylation accompanies inhibition of V-DJ recombination in a transgenic model of immunoglobulin heavy-chain allelic exclusion. Thus, changes in histone acetylation appear to be important for both promotion and inhibition of V-DJ rearrangement during B-cell ontogeny and development.  相似文献   

11.
12.
13.
14.
The clonal distribution and stable expression of killer cell Ig-like receptor (KIR) genes is epigenetically regulated. To assess the epigenetic changes that occur during hemopoietic development we examined DNA methylation and chromatin structure of the KIR locus in early hemopoietic progenitor cells and major lymphocyte lineages. In hemopoietic progenitor cells, KIR genes exhibited the major hallmarks of epigenetic repression, which are dense DNA methylation, inaccessibility of chromatin to Micrococcus nuclease digest, and a repressive histone signature, characterized by strong H3K9 dimethylation and reduced H4K8 acetylation. In contrast, KIR genes of NK cells showed active histone signatures characterized by absence of H3K9 dimethylation and presence of H4K8 acetylation. Histone modifications correlated well with the competence of different lymphocyte lineages to express KIR; whereas H4K8 acetylation was high in NK and CD8+ T cells, it was almost absent in CD4+ T cells and B cells and, in the latter case, replaced by H3K9 dimethylation. In KIR-competent lineages, active histone signatures were also observed in silent KIR genes and in this case found in combination with dense DNA methylation of the promoter and nearby regions. The study suggests a two-step model of epigenetic regulation in which lineage-specific acquisition of euchromatic histone marks is a prerequisite for subsequent gene-specific DNA demethylation and expression of KIR genes.  相似文献   

15.
16.
The process of meiosis reduces a diploid cell to four haploid gametes and is accompanied by extensive recombination. Thus, the dynamics of chromatin during meiosis are significantly different than in mitotic cells. As spermatogenesis progresses, there is a widespread reorganization of the haploid genome followed by extensive DNA compaction. It has become increasingly clear that the dynamic composition of chromatin plays a critical role in the activities of enzymes and processes that act upon it. Therefore, an analysis of the role of histone variants and modifications in these processes may shed light upon the mechanisms involved and the control of chromatin structure in general. Histone variants such as histone H3.3, H2AX, and macroH2A appear to play key roles in the various stages of spermiogenesis, in addition to the specifically modulated acetylation of histone H4 (acH4), ubiquitination of histones H2A and H2B (uH2A, uH2B), and phosphorylation of histone H3 (H3p). This review will examine recent discoveries concerning the role of histone modifications and variants during meiosis and spermatogenesis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号