首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonviral gene therapy focuses intensely on nitrogen-containing macromolecules and lipids to condense and deliver DNA as a therapeutic for genetic human diseases. For the first time, DNA binding and gene transfection experiments compared phosphonium-containing macromolecules with their respective ammonium analogs. Conventional free radical polymerization of quaternized 4-vinylbenzyl chloride monomers afforded phosphonium- and ammonium-containing homopolymers for gene transfection experiments of HeLa cells. Aqueous size exclusion chromatography confirmed similar absolute molecular weights for all polyelectrolytes. DNA gel shift assays and luciferase expression assays revealed phosphonium-containing polymers bound DNA at lower charge ratios and displayed improved luciferase expression relative to the ammonium analogs. The triethyl-based vectors for both cations failed to transfect HeLa cells, whereas tributyl-based vectors successfully transfected HeLa cells similar to Superfect demonstrating the influence of the alkyl substituent lengths on the efficacy of the gene delivery vehicle. Cellular uptake of Cy5-labeled DNA highlighted successful cellular uptake of triethyl-based polyplexes, showing that intracellular mechanisms presumably prevented luciferase expression. Endocytic inhibition studies using genistein, methyl β-cyclodextrin, or amantadine demonstrated the caveolae-mediated pathway as the preferred cellular uptake mechanism for the delivery vehicles examined. Our studies demonstrated that changing the polymeric cation from ammonium to phosphonium enables an unexplored array of synthetic vectors for enhanced DNA binding and transfection that may transform the field of nonviral gene delivery.  相似文献   

2.
Modification of a model protein, horseradish peroxidase (HRP), with amphiphilic block copolymer poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (Pluronic), was previously shown to enhance the transport of this protein across the blood-brain barrier in vivo and brain microvessel endothelial cells in vitro. This work develops procedures for synthesis and characterization of HRP with Pluronic copolymers, having different lengths of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks. Four monoamine Pluronic derivatives (L81, P85, L121, P123) were synthesized and successfully conjugated to a model protein, HRP, via biodegradable or nondegradable linkers (dithiobis(succinimidyl propionate) (DSP), dimethyl 3,3'-dithiobispropionimidate (DTBP), and disuccinimidyl propionate (DSS)). The conjugation was confirmed by HRP amino group titration, matrix-assisted laser desorption/ionization-time of flight spectroscopy, and cation-exchange chromatography. HRP conjugates containing an average of one to two Pluronic moieties and retaining in most cases over 70% of the activity were synthesized. Increased cellular uptake of these conjugates was demonstrated using the Mardin-Derby canine kidney cell line and primary bovine brain microvessel endothelial cells. The optimal modifications included Pluronic L81 and P85. These copolymers have shorter PPO chains compared to Pluronic P123 and L121, which were less efficient. There was little if any dependence of the uptake on the length of the hydrophilic PEO block for the optimal modifications. The proposed modifications may be used to increase cellular uptake of other proteins.  相似文献   

3.
Vesicles made completely from diblock copolymers-polymersomes-can be stably prepared by a wide range of techniques common to liposomes. Processes such as film rehydration, sonication, and extrusion can generate many-micron giants as well as monodisperse, approximately 100 nm vesicles of PEO-PEE (polyethyleneoxide-polyethylethylene) or PEO-PBD (polyethyleneoxide-polybutadiene). These thick-walled vesicles of polymer can encapsulate macromolecules just as liposomes can but, unlike many pure liposome systems, these polymersomes exhibit no in-surface thermal transitions and a subpopulation even survive autoclaving. Suspension in blood plasma has no immediate ill-effect on vesicle stability, and neither adhesion nor stimulation of phagocytes are apparent when giant polymersomes are held in direct, protracted contact. Proliferating cells, in addition, are unaffected when cultured for an extended time with an excess of polymersomes. The effects are consistent with the steric stabilization that PEG-lipid can impart to liposomes, but the present single-component polymersomes are far more stable mechanically and are not limited by PEG-driven micellization. The results potentiate a broad new class of technologically useful, polymer-based vesicles.  相似文献   

4.
Conventional free radical polymerization with subsequent postpolymerization modification afforded imidazolium copolymers with controlled charge density and side chain hydroxyl number. Novel imidazolium-containing copolymers where each permanent cation contained one or two adjacent hydroxyls allowed precise structure-transfection efficiency studies. The degree of polymerization was identical for all copolymers to eliminate the influence of molecular weight on transfection efficiency. DNA binding, cytotoxicity, and in vitro gene transfection in African green monkey COS-7 cells revealed structure-property-transfection relationships for the copolymers. DNA gel shift assays indicated that higher charge densities and hydroxyl concentrations increased DNA binding. As the charge density of the copolymers increased, toxicity of the copolymers also increased; however, as hydroxyl concentration increased, cytotoxicity remained constant. Changing both charge density and hydroxyl levels in a systematic fashion revealed a dramatic influence on transfection efficiency. Dynamic light scattering of the polyplexes, which were composed of copolymer concentrations required for the highest luciferase expression, showed an intermediate DNA-copolymer binding affinity. Our studies supported the conclusion that cationic copolymer binding affinity significantly impacts overall transfection efficiency of DNA delivery vehicles, and the incorporation of hydroxyl sites offers a less toxic and effective alternative to more conventional highly charged copolymers.  相似文献   

5.
We describe here a unique transfer system based on a truncated form of the human linker histone H1F4 for the delivery of nucleic acids to a variety of cells. The efficiency of truncated histone H1.4F was assessed using both primary mammalian and immortalised insect and mammalian cell lines. Our results indicated that recombinant histone H1.4F was able to deliver DNA, dsRNA and siRNA in all cells tested. Quantitative analysis based on reporter gene expression or silencing of target genes revealed that the transfection efficiency of histone H1.4F was comparable to, or better than, liposome-based systems. Notably, the efficiency of histone H1.4F was associated with very low toxicity for transfected cells. The human H1.4F recombinant protein is easily purified in large-scale from bacterial lysates using inexpensive simplified processing. This versatile transfection system represents an important advance in the field of gene delivery and an improvement over earlier nucleic acid delivery methods.  相似文献   

6.
We demonstrate a simple means to covalently bond DNA to both hard (i.e., glass and silicon wafers) and soft (i.e., polymeric) substrates that provides quantitative and precise control of the DNA areal density. The approach is based on spin coating an alkyne-end-functional diblock copolymer, alpha-alkyne-omega-Br-poly( tBA- b-MMA), that self-assembles on both types of substrates as an ordered monolayer and thereby directs alkyne groups to the surface. Azido-functionalized DNA is covalently linked to the alkyne functionalized substrates by means of a "click" reaction between azide and alkyne groups. The density of immobilized DNA can be quantitatively controlled by varying the parameters used for spin-coating the copolymer film, that is, solution concentration and rotational speed, or by varying the copolymer molecular weight. We find the yield of the DNA coupling reaction to be dependent on the nature of the polymer underlying the reactive alkyne functional groups, being higher for more hydrophilic polymers.  相似文献   

7.
8.
There is a tremendous need to enhance delivery of therapeutic polypeptides to the brain to treat disorders of the central nervous system (CNS). The brain delivery of many polypeptides is severely restricted by the blood-brain barrier (BBB). The present study demonstrates that point modifications of a BBB-impermeable polypeptide, horseradish peroxidase (HRP), with lipophilic (stearoyl) or amphiphilic (Pluronic block copolymer) moieties considerably enhance the transport of this polypeptide across the BBB and accumulation of the polypeptide in the brain in vitro and in vivo. The enzymatic activity of the HRP was preserved after the transport. The modifications of the HRP with amphiphilic block copolymer moieties through degradable disulfide links resulted in the most effective transport of the HRP across in vitro brain microvessel endothelial cell monolayers and efficient delivery of HRP to the brain. Stearoyl modification of HRP improved its penetration by about 60% but also increased the clearance from blood. Pluronic modification using increased penetration of the BBB and had no significant effect on clearance so that uptake by brain was almost doubled. These results show that point modification can improve delivery of even highly impermeable polypeptides to the brain.  相似文献   

9.
Research within the field of colloidal liquid aphrons (CLAs) for enzyme immobilization has often used ionic surfactants for the retention of enzymes. Although these charged interactions allow for enhanced immobilization, they can often lead to denaturation of enzyme activity, and even release of the protein. Sodium alginate has been used in drug delivery applications due to its low toxicity and charged interactions that allow for encapsulation. Hence, alginate systems can be used as an alternative to ionic surfactants in CLA immobilization. This paper presents, for the first time, the use of sodium alginate as potential ligand for enhanced CLA immobilization. The use of five model proteins; lysozyme, bovine serum albumin, ovalbumin, insulin, and α-chymotrypsin, of various pIs and hydrophobicities, showed the relevance of electrostatic interactions in promoting binding with sodium alginate when the pH < pI, with 100% immobilization attributed to alginate incorporated CLAs over general nonionic formulations. Furthermore, above their pI, >80% protein recovery was observed, with activity and conformation comparable to their native counterparts. Finally, the use of proteolysis showed that as the degree of ionic bonding increased between the protein and sodium alginate, the degree of protease resistance decreased due to conformational changes experienced during binding.  相似文献   

10.
Synthetic vectors based on reducible polycations consisting of histidine and polylysine residues (HIS RPCs) were evaluated for their ability to deliver nucleic acids. Initial experiments showed that RPC-based vectors with at least 70% histidine content mediated efficient levels of gene transfer without requirement for the endosomolytic agent chloroquine. Significant gene transfer was observed in a range of cell types achieving up to a 5-fold increase in the percentage of transfected cells compared to 25 kDa PEI, a gold standard synthetic vector. In contrast to 25 kDa PEI, HIS RPCs also mediated efficient transfer of other nucleic acids, including mRNA encoding green fluorescent protein in PC-3 cells and siRNA directed against the neurotrophin receptor p75NTR in post-mitotic cultures of rat dorsal root ganglion cell neurons. Experiments to elevate intracellular glutathione and linear profiling of cell images captured by multiphoton fluorescent microscopy highlighted that parameters such as the molecular weight and rate of cleavage of HIS RPCs were important factors in determining transfection activity. Altogether, these results demonstrate that HIS RPCs represent a novel and versatile type of vector that can be used for efficient cytoplasmic delivery of a broad range of nucleic acids. This should enable different or a combination of therapeutic strategies to be evaluated using a single type of polycation-based vector.  相似文献   

11.
Surface modification of cationic lipoplexes has been carried out by means of a postgrafting reaction. The original lipoplexes described comprise a cationic lipid, a neutral lipid, poly(ethylene glycol)-cholesterol (with or without a targeting ligand) and DNA. Modifying their surface via a chemical, postgrafting reaction did not alter their size (approximately 100 nm) nor their ability to compact DNA, but did give a reduced zeta potential (approximately 0 mV) to afford surface neutral particles. With the modified lipoplexes nonspecific NIH3T3 cell surface binding in vitro was inhibited. Intravenous injection of the neutralized lipoplexes in mice showed decreased accumulation of the particles in the lung as compared to PEGylated cationic lipoplexes. Tumor targeting was also achieved in vivo by the addition of an RGD-PEG-Cholesterol as a lipid-ligand in the postgrafted lipoplex formulation.  相似文献   

12.
The self-assembly of well-defined polypeptide-based diblock copolymers into micelles and vesicles is presented. The stimuli-responsive behavior of polypeptides to pH and ionic strength is used to produce stimuli-responsive nanoparticles with controlled size and shape. Results focusing on micelles and vesicles obtained from polypeptide-based diblock copolymers that are particularly promising for biomedical applications are detailed by means of static and dynamic light scattering analysis, UV circular dichroism, NMR and small angle neutron scattering experiments. Also systems able to form vesicles with a narrow size distribution at basic and acid pH going through a single molecule intermediate state are presented. These nanoparticles are particularly interesting for encapsulation and delivery purpose at a controlled pH.  相似文献   

13.
Entry of exogenously applied DNA into the cytoplasm and subsequent transport into the nucleus are major cellular barriers for nonviral gene delivery vectors. To overcome these barriers, we have covalently attached the cationic peptide melittin to poly(ethylenimine) (PEI). This conjugate condensed DNA into small, discrete particles (<100 nm in diameter), and the membrane lytic activity of melittin enabled efficient release of the DNA into the cytoplasm, as monitored by fluorescence microscopy and flow cytometry. Compared with PEI, the transfection activity was strongly increased within a broad range of cell lines and types tested, including different tumor cell lines but also primary hepatocytes and human umbilical vein endothelial cells. The early onset of gene expression (within 4 h, reaching maximal values after 12 h) and the high reporter gene expression achieved in slowly dividing or confluent cells suggested a further role of melittin after releasing the DNA into the cytoplasm. Intracytoplasmic microinjection of melittin-containing PEI.DNA complexes into fibroblasts produced 40% cellular frequency of reporter gene expression that was inhibitable by co-injection of wheat germ agglutinin, whereas simple PEI.DNA complexes showed only 10%. These data suggest that melittin enables release of nonviral gene transfer particles into the cytoplasm and also enhances their transport into the nucleus, possibly via the cationic cluster KRKR near the C terminus of the peptide.  相似文献   

14.
Novel 4-branched diblock copolymers consisting of cationic chains as an inner domain and nonionic chains as an outer domain were prepared by iniferter-based living radial polymerization and evaluated as a polymeric transfectant. The cationic polymerization of 3-(N,N-dimethylamino)propyl acrylamide (DMAPAAm) using 1,2,4,5-tetrakis( N,N-diethyldithiocarbamylmethyl)benzene as a 4-functional iniferter followed by the nonionic block polymerization of N,N-dimethylacrylamide (DMAAm) afforded 4-branched diblock copolymers with controlled compositions. By changing the solution or irradiation conditions, 4-branched PDMAPAAms with molecular weights of 10,000, 20,000, and 50,000 were synthesized. In addition, by graft polymerization, PDMAPAAm-PDMAAm blocked copolymers with copolymer composition (unit ratio of DMAAm/DMAPAAm) ranging from 0.18 to 1.0 for each cationic polymer were synthesized. All polymers were shown to interact with and condense plasmid DNA to yield polymer/DNA complexes (polyplexes). A transfection study on COS-1 cells showed that the polyplexes from block copolymers with cationic chain length of approximately 50,000 and a nonionic chain length of 30,000, which were approximately 200 nm in diameter and very stable in aqueous media, had the most efficient luciferase activity with minimal cellular cytotoxicity under a charge ratio of 20 (vector/pDNA). The PDMAPAAm-PDMAAm-blocked, star-shaped polymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

15.
In this study we have prepared various phosphatidyl choline based colloidal systems, namely liposomes, transfersomes, microemulsions and micelles, using similar excipients and compared their ability to deliver drugs into and through the skin under occlusive and non-occlusive conditions. Hydrophilic propranolol hydrochloride (PHCl) and lipophilic propranolol base (PB) were used as model drugs. All tested parameters, that is formulation composition, drug characteristics and testing conditions, influenced skin permeability and skin retention. A trend was observed showing that the skin permeation as well as skin retention decreases with the amount of phosphatidyl choline in the formulations for both tested model drugs (micelles > transfersomes > liposomes > microemulsion). The lipophilic model drug had higher skin permeability especially when incorporated into the systems containing mainly hydrophilic excipients. Skin retention, however, was not affected by the drug hydrophilicity to the same extent as skin permeability. Occlusion increased both skin retention and skin permeation for both model drugs.  相似文献   

16.
17.
  1. Download : Download high-res image (119KB)
  2. Download : Download full-size image
  相似文献   

18.
A series of amphiphilic diblock copolypeptides (K30b ‐F15, K30b ‐F30, and K30b ‐F45) were synthesized via N ‐carboxy‐α‐amino‐anhydride ring‐opening polymerization. The copolypeptides had excellent antibacterial efficacy to both Gram positive (S. aureus ) and Gram negative (E. coli ) bacteria. The minimum inhibitory concentrations (MICs) against E. coli and S. aureus are 8 μg mL?1 and 2 μg mL?1, respectively, lower than most natural and artificial antimicrobial peptides (AMPs). The morphological changes of the bacteria treated with diblock copolypeptides were investigated by transmission electron microscopy; the results proved that the diblock copolypeptides had a similar antibacterial pore‐forming mechanism to natural cationic peptides. This was confirmed by laser scanning confocal microscope images. CCK‐8 results and the MICs showed that the diblock copolypeptides have high selectivity to bacteria, which suggested that the diblock copolypeptides could be excellent candidates to replace traditional antibiotics in future.  相似文献   

19.
Lei Z  Bi S 《Journal of biotechnology》2007,128(1):112-119
Well-defined amphiphilic block copolymers poly(styrene-b-acrylic acid) (PS-b-PAA) with controlled block length were synthesized using atom transfer radical polymerization (ATRP). Pectinase enzyme was immobilized on the well-defined amphiphilic block copolymers PS-b-PAA. The carboxyl groups on the amphiphilic PS-b-PAA diblock copolymers present a very simple, mild, and time-saving process for enzyme immobilization. Various characteristics of immobilized pectinase such as the pH and temperature stability, thermal stability, and storage stability were valuated. Among them the pH optimum and temperature optimum of free and immobilized pectinase were found to be pH 6.0 and 65 degrees C.  相似文献   

20.
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号