首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs.  相似文献   

2.
The two Epstein-Barr virus (EBV) types, EBV-1 and EBV-2, are known to differ in their EBNA-2 genes, which are 64 and 53% identical in their nucleotide and predicted amino acid sequences, respectively. Restriction endonuclease maps and serologic analyses detect few other differences between EBV-1 and EBV-2 except in the EBNA-3 gene family. We determined the DNA sequence of the AG876 EBV-2 EBNA-3 coding region and have compared it with known B95-8 EBV-1 EBNA-3 sequences to delineate the extent of divergence between EBV-1 and EBV-2 isolates in their EBNA-3 genes. The B95-8 and AG876 EBV isolates had nucleotide and amino acid identity levels of 90 and 84%, 88 and 80%, and 81 and 72% for the EBNA-3A, -3B, and -3C genes, respectively. In contrast, nucleotide sequence identity in the noncoding DNA adjacent to the B95-8 and AG876 EBNA-3 open reading frames was 96%. We used the polymerase chain reaction to demonstrate that five additional EBV-1 isolates and six additional EBV-2 isolates have the type-specific differences in their EBNA-3 genes predicted from the B95-8 or AG876 sequences. Thus, EBV-1 and EBV-2 are two distinct wild-type EBV strains that have significantly diverged at four genetic loci and have maintained type-characteristic differences at each locus. The delineation of these sequence differences between EBV-1 and EBV-2 is essential to ongoing molecular dissection of the biologic properties of EBV and of the human immune response to EBV infection. The application of these data to the delineation of epitopes recognized in the EBV-immune T-cell response is also discussed.  相似文献   

3.
Epstein-Barr virus (EBV)-negative Burkitt lymphomas (BLs) can be infected in vitro with prototype EBV strains to study how the virus may affect the phenotype of tumor cells. Studies thus far have concentrated on the use of transforming B95-8 and nontransforming P3HR1 strains. Immunological and phenotypic differences between the sublines infected with these two strains were reported. The majority of these differences, if not all, can be attributed to the lack of EBNA-2 coding sequences in the P3HR1 strain. The recent development of a selectable Akata strain has opened up new possibilities for infecting epithelial and T cells as well. We infected five EBV-negative BL lines with the recombinant Akata virus. Our results indicate that the infected cell lines BL28, Ramos, and DG75 express EBNA-1, EBNA-2, and LMP1, the viral proteins associated with type III latency, and use both YUK and QUK splices. In contrast, two EBV-negative variants of Akata and Mutu when reinfected displayed restricted type I latency and expressed only EBNA-1. All clones of infected Mutu cells used the QUK splice exclusively. The usage of Qp was observed in a majority of Akata clones. Some Akata clones, however, were found to have double promoter usage (Qp and C/Wp) but at 4 months after infection did not express EBNA-2. The results demonstrate differential regulation of EBV latency in BLs with the same recombinant viral strain and suggest that the choice of latency type may be cell dependent. The restricted latency observed for infected Akata and Mutu cells indicates that a BL may opt for type I latency in the absence of immune pressure as well.  相似文献   

4.
Cytotoxic T-lymphocyte (CTL) responses to Epstein-Barr virus (EBV) tend to focus on a few immunodominant viral epitopes; where these epitope sequences are polymorphic between EBV strains, host CTL specificities should reflect the identity of the resident strain. In studying responses in HLA-B27-positive virus carriers, we identified 2 of 15 individuals who had strong CTL memory to the pan-B27 epitope RRIYDLIEL (RRIY) from nuclear antigen EBNA3C but whose endogenous EBV strain, isolated in vitro, encoded a variant sequence RKIYDLIEL (RKIY) which did not form stable complexes with B27 molecules and which was poorly recognized by RRIY-specific CTLs. To check if such individuals were also carrying an epitope-positive strain (either related to or distinct from the in vitro isolate), we screened DNA from freshly isolated peripheral blood mononuclear cells for amplifiable virus sequences across the EBNA3C epitope, across a different region of EBNA3C with type 1-type 2 sequence divergence, and across a polymorphic region of EBNA1. This showed that one of the unexplained RRIY responders carried two distinct type 1 strains, one with an RKIY and one with an RRIY epitope sequence. The other responder carried an RKIY-positive type 1 strain and a type 2 virus whose epitope sequence of RRIFDLIEL was antigenically cross-reactive with RRIY. Of 15 EBV-seropositive donors analyzed by such assays, 12 appeared to be carrying a single virus strain, one was coinfected with distinct type 1 strains, and two were carrying both type 1 and type 2 viruses. This implies that a small but significant percentage of healthy virus carriers harbor multiple, perhaps sequentially acquired, EBV strains.  相似文献   

5.
Ito S  Yanagi K 《Journal of virology》2003,77(6):3824-3831
Epstein-Barr virus (EBV) EBNA-1 is the only EBV-encoded protein that is essential for the once-per-cell-cycle replication and maintenance of EBV plasmids in latently infected cells. EBNA-1 binds to the oriP region of latent EBV plasmids and cellular metaphase chromosomes. In the absence of oriP-containing plasmids, EBNA-1 was highly colocalized with cellular DNA replication foci that were identified by immunostaining S-phase cells for proliferating cell nuclear antigen and replication protein A (RP-A) in combination with DNA short pulse-labeling. For the association of EBNA-1 with the cellular replication focus areas, the EBNA-1 regions of amino acids (aa) 8 to 94 and/or aa 315 to 410, but not the RP-A-interacting carboxy-terminal region, were necessary. These results suggest a new aspect of latent virus-cell interactions.  相似文献   

6.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.  相似文献   

7.
In laboratory lymphoblastoid cell lines and in natural human infections, Epstein-Barr virus (EBV) strains have been identified by DNA restriction fragment length polymorphisms of the BamHI H fragment. Multiple, heterogeneous BamHI H fragments have been detected in oral hairy leukoplakia (HLP), raising the question of EBV coinfection with multiple strains. To investigate whether the heterogeneous BamHI H fragments represent different EBV strains or recombinant variants of the same strain, EBV DNA from HLP lesions was analyzed to characterize the viral strains and determine the source of possible recombinant variants. Clones of heterogeneous BamHI H fragments from a single HLP lesion were determined to have strain identity on the basis of sequence identity of the EBNA-2 genes. Intrastrain homologous recombination within the IR2 internal repeat region and nonhomologous recombination of other sequences accounted for the heterogeneity of the BamHI H fragments. PCR amplification from additional HLP specimens detected similar recombinant variants. A possible example of site-specific recombination joining the BamHI Y portion of the EBNA-2 gene to sequences within the BamHI S fragment was also detected in multiple HLP specimens. These data indicate that intrastrain recombination during productive replication confounds the use of restriction fragment length polymorphism analysis of the BamHI Y and H fragments to identify EBV strains in HLP. In patients with permissive epithelial EBV infections, EBV strains could be more accurately distinguished by sequence identity or divergence within known regions of genetic strain variation.  相似文献   

8.
9.
Epstein-Barr virus (EBV) strains from the highly HLA-A11-positive Chinese population are predominantly type 1 and show a variety of sequence changes (relative to the contemporary Caucasian prototype strain B95.8) in the nuclear antigen EBNA3B sequences encoding two immunodominant HLA-A11 epitopes, here called IVT and AVF. This has been interpreted by some as evidence of immune selection and by others as random genetic drift. To study epitope variation in a broader genomic context, we sequenced the whole of EBNA3B and parts of the EBNA2, 3A, and 3C genes from each of 31 Chinese EBV isolates. At each locus, type 1 viruses showed <2% nucleotide divergence from the B95.8 prototype while type 2 sequences remained even closer to the contemporary African prototype Ag876. However, type 1 isolates could clearly be divided into families based on linked patterns of sequence divergence from B95.8 across all four EBNA loci. Different patterns of IVT and AVF variation were associated with the different type 1 families, and there was additional epitope diversity within families. When the EBNA3 gene sequences of type 1 Chinese strains were subject to computer-based analysis, particular codons within the A11-epitope-coding region were among the few identified as being under positive or diversifying selection pressure. From these results, and the observation that mutant epitopes are consistently nonimmunogenic in vivo, we conclude that the immune selection hypothesis remains viable and worthy of further investigation.  相似文献   

10.
11.
EBV gene expression in an NPC-related tumour.   总被引:35,自引:1,他引:35       下载免费PDF全文
  相似文献   

12.
The Epstein-Barr virus (EBV) genome becomes established as a multicopy plasmid in the nucleus of infected B lymphocytes. A cis-acting DNA sequence previously described within the BamHI-C fragment of the EBV genome (J. Yates, N. Warren, D. Reisman, and B. Sugden, Proc. Natl. Acad. Sci. USA 81:3806-3810, 1984) allows stable extrachromosomal plasmid maintenance in latently infected cells, but not in EBV-negative cells. In agreement with the findings of Yates et al., deletion analysis permitted the assignment of this function to a 2,208-base-pair region (nucleotides 7315 to 9517 of the B95-8 strain of EBV) of the BamHI-C fragment that contained a striking repetitive sequence and an extended region of dyad symmetry. A recombinant vector, p410+, was constructed which carried the BamHI-K fragment (nucleotides 107565 to 112625 of the B95-8 strain, encoding the EBV-associated nuclear antigen EBNA-1), the cis-acting sequence from the BamHI-C fragment, and a dominant selectable marker gene encoding G-418 resistance in animal cells. After being transfected into HeLa cells, this plasmid persisted extrachromosomally at a low copy number, with no detectable rearrangements or deletions. Two mutations in the BamHI-K-derived portion of p410+, a large in-frame deletion and a linker insertion frameshift mutation, both of which alter the carboxy-terminal portion of EBNA-1, destroyed the ability of the plasmid to persist extrachromosomally in HeLa cells. A small in-frame deletion and linker insertion mutation in the region encoding the carboxy-terminal portion of EBNA-1, which replaced 19 amino acid codons with 2, had no effect on the maintenance of p410+ in HeLa cells. These observations indicate that EBNA-1, in combination with a cis-acting sequence in the BamHI-C fragment, is in part responsible for extrachromosomal EBV-derived plasmid maintenance in HeLa cells. Two additional activities have been localized to the BamHI-C DNA fragment: (i) a DNA sequence that could functionally substitute for the simian virus 40 enhancer and promoter elements controlling the expression of G-418 resistance and (ii) a DNA sequence which, although not sufficient to allow extrachromosomal plasmid maintenance, enhanced the frequency of transformation to G-418 resistance in EBV-positive (but not EBV-negative) cells. These findings suggest that the BamHI-C fragment contains a lymphoid-specific or EBV-inducible promoter or enhancer element or both.  相似文献   

13.
The Burkitt's lymphoma line Daudi carries a nontransforming Epstein-Barr virus (EBV) strain that has a deletion in the BamHI WYH region of the genome coding for the EBV nuclear antigen 2 (EBNA-2). Daudi cells fail to express the EBV-encoded latent membrane protein (LMP) (D. Ghosh and E. Kieff, J. Virol. 64:1855-1858, 1990). We show that LMP expression can be up regulated by exposure to n-butyrate and by superinfection with the B95-8 (B virus)- and P3HR1 (P virus)-derived EBV strains. Two LMP polypeptides of 60 and 48 kilodaltons (kDa) were detected in immunoblots of Daudi cells that had been exposed to 3 mM n-butyrate for 24 h. The intensity of the 48-kDa LMP increased during 72 h, in parallel with the appearance of early antigen-positive cells. The 60-kDa LMP was expressed at a low level and remained constant. Superinfection of Daudi cells with B and P virus induced the 60-kDa LMP within 3 h. In addition, P virus induced the 48-kDa LMP at a low level. The B virus-encoded EBNA-2 and EBNA-5 were detected 12 h after superinfection. The B virus-encoded 63-kDa LMP was coexpressed with the endogenous LMP after 48 h. Inactivation of the virus by UV illumination abolished the expression of the B virus-encoded antigens but did not affect the induction of the endogenous LMP. The B-cell activation marker CD23 was up regulated by B virus superinfection but not by n-butyrate exposure. CD23 was also expressed at a higher level in a stable B virus-converted subline, E95A-Daudi, that was EBNA-2 positive and coexpressed the Daudi virus- and B virus-encoded LMP. The results suggest that LMP expression is regulated by the interaction of cellular and viral factors. Binding of the virus to its membrane receptor might be involved in the triggering of cellular control mechanisms. Viral gene products are not directly involved in this function but may contribute to create a permissive cellular environment for LMP expression.  相似文献   

14.
We have previously characterized several genomic rearrangements of Epstein-Barr virus (EBV) DNA contained in one of the defective EBV genomes harbored by the P3HR-1 (HR-1) line (H. B. Jenson, M. S. Rabson, and G. Miller, J. Virol. 58:475-486, 1986). One recombinant clone of heterogeneous DNA (het DNA) from this defective genome is an EcoRI fragment of 16 kilobase pairs (kbp) which is a palindrome. DNA digestion fragments specific for the center of this palindrome were present in cells which contained het DNA but not in cells which lacked het DNA. Thus, the palindrome was not an artifact of DNA cloning. The organization of the center of this palindrome was studied by DNA sequencing. The comparable region of the parental HR-1 genome was also studied by DNA sequencing. The central 3,495 base pairs (bp) of the palindrome were composed of sequences derived exclusively from internal repeat 1 of EBV, represented by BamHI W fragment. At each end of the central 3,495 hp was a symmetrical recombination with sequences of BamHI-Z, located more than 50 kbp away on the standard EBV genome. The central 3,495 bp were composed of an unduplicated 341 bp flanked by two perfect palindromic repeats of 1,577 bp. The 341-bp unique region was a portion of a 387-bp region of standard HR-1 BamHI-W which was identical to the central 387 bp of the palindrome. This central 387-bp region contained numerous stretches of dyad symmetry capable of forming a large stem-and-loop structure. The palindromic rearrangement had created two novel open reading frames in het DNA derived from standard HR-1 BamHI-W sequences. These two het DNA open reading frames had different amino termini but identical carboxy termini derived from the large open reading frame in standard HR-1 BamHI-W (HR-1 BWRF1). The BamHI-W sequences found in het DNA did not include either the TATA box of standard HR-1 BamHI-W or the exons which are present in the potentially polycistronic latent mRNAs encoding EBV nuclear antigens. These marked alterations in genomic structure may relate to the unique biologic properties of virus stocks containing het DNA by creation of new polypeptides or by formation or deletion of regulatory or functional signals.  相似文献   

15.
Injection of Epstein-Barr virus (EBV)-transformed human lymphoblastoid B cells into immunodeficient SCID mice results in the appearance of rapidly growing, fatal human B-cell tumors. To evaluate the role of EBV nuclear protein 2 (EBNA-2) in this process, we generated lymphoblastoid cell lines transformed by several EBV mutants which were identical except for deletions in the EBNA-2 gene (J. I. Cohen, F. Wang, and E. Kieff, J. Virol. 65:2545-2554, 1991). These cell lines were injected intraperitoneally into SCID mice, and the interval until tumor detection was determined. Cell lines transformed with EBV type 1 (strain W91) or with EBV type 2 (strain P3HR-1) with an inserted type 1 EBNA-2 gene grew at the same rapid rate, indicating the potential importance of EBNA-2 for tumor formation in vivo. Cell lines derived from three different EBV mutants with deletions in the amino half of EBNA-2 produced tumors more slowly than cell lines transformed by wild-type W91 virus. In contrast, a cell line transformed with an EBV mutant with a deletion in the carboxy terminus of EBNA-2 grew more rapidly than cell lines transformed by wild-type virus. EBV mutants with deletions in the amino half of EBNA-2 had had reduced transforming activity in vitro, while the carboxy-terminal EBNA-2 mutant had had transforming activity greater than or equal to that of the wild type. These data indicate that EBNA-2 plays a critical role both for B-cell tumor growth in SCID mice and for B-lymphocyte transformation in vitro.  相似文献   

16.
The specific binding of HeLa cell factors to DNA sequences at the Epstein-Barr virus (EBV) latent origin of DNA replication was detected by gel shift experiments and DNase I footprinting analysis. These cellular proteins protected at least five discrete regions of the DNA replication origin. The viral protein required for EBV plasmid replication, EBV nuclear antigen 1 (EBNA-1), binds to specific sequences within the origin region. The HeLa cell proteins competed with EBNA-1 for binding to EBV origin DNA in vitro, leading to the possibility that these cellular proteins regulate EBV DNA replication by displacing EBNA-1 at the origin sites.  相似文献   

17.
Nonproductive infection of B lymphocytes by Epstein-Barr virus (EBV) is associated with a highly restricted expression of viral genes. In growth-transformed lymphoblastoid cell lines, the products of these genes include a complex of at least six EBV nuclear antigens (EBNAs) (EBNA-1 through EBNA-6) and one membrane protein (latent membrane protein [LMP]). EBV-carrying Burkitt's lymphoma (BL) biopsies and derived cell lines that have retained a representative phenotype (group I BL lines) express only EBNA-1 (M. Rowe, D. T. Rowe, C. D. Gregory, L. S. Young, P. J. Farrell, H. Rupani, and A. B. Rickinson, EMBO J. 6:2743-2751, 1987). We have found that EBNA-2 through EBNA-6 and LMP can be up regulated by treating the group I BL line Rael with the DNA-demethylating agent 5-azacytidine (5-AzaC). The drug acted in a time- and dose-dependent manner. EBNA-2-positive cells were detected by anti-complement immunofluorescence staining just 12 h after addition of 4 microM 5-AzaC and reached a maximum number at 72 h, when up to 75% of the population was positive. EBNA-2, EBNA-3, EBNA-4, EBNA-4, EBNA-6, and LMP were demonstrated immunoblots starting at 48 h. The EBV-encoded early antigens and viral capsid antigens were also induced but at a lower level. EBNA-2 and the lytic cycle-associated antigens appeared with a different time course and in largely nonoverlapping cell subpopulations, as demonstrated by double fluorescence staining. Thus, EBNA-2 expression was not restricted to lytically infected cells, nor was EBNA-2 required for entry into the lytic cycle. The coding and regulatory sequences of EBNA-2 and LMP were found to be highly methylated in Rael cells and were, as expected, demethylated after 5-AzaC treatment. These findings suggest that DNA methylation may participate in the regulation of growth transformation-associated viral genes in BL cells.  相似文献   

18.
Replication of the Epstein-Barr viral (EBV) genome occurs once per cell cycle during latent infection. Similarly, plasmids containing EBV’s plasmid origin of replication, oriP, are replicated once per cell cycle. Replication from oriP requires EBV nuclear antigen 1 (EBNA-1) in trans; however, its contributions to this replication are unknown. oriP contains 24 EBNA-1 binding sites; 20 are located within the family of repeats, and 4 are found within the dyad symmetry element. The site of initiation of DNA replication within oriP is at or near the dyad symmetry element. We have identified a plasmid that contains the family of repeats but lacks the dyad symmetry element whose replication can be detected for a limited number of cell cycles. The detection of short-term replication of this plasmid requires EBNA-1 and can be inhibited by a dominant-negative inhibitor of EBNA-1. We have identified two regions within this plasmid which can independently contribute to this replication in the absence of the dyad symmetry element of oriP. One region contains native EBV sequences within the BamHI C fragment of the B95-8 genome of EBV; the other contains sequences within the simian virus 40 genome. We have mapped the region contributing to replication within the EBV sequences to a 298-bp fragment, Rep*. Plasmids which contain three copies of Rep* plus the family of repeats support replication more efficiently than those with one copy, consistent with a stochastic model for the initiation of DNA synthesis. Plasmids with three copies of Rep* also support long-term replication in the presence of EBNA-1. These observations together indicate that the latent origin of replication of EBV is more complex than formerly appreciated; it is a multicomponent origin of which the dyad symmetry element is one efficient component. The experimental approach described here could be used to identify eukaryotic sequences which mediate DNA synthesis, albeit inefficiently.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号