共查询到20条相似文献,搜索用时 0 毫秒
1.
Microbial fermentations are potential producers of sustainable energy carriers. In this study, ethanol and hydrogen production was studied by two thermophilic bacteria (strain AK15 and AK17) isolated from geothermal springs in Iceland. Strain AK15 was affiliated with Clostridium uzonii (98.8%), while AK17 was affiliated with Thermoanaerobacterium aciditolerans (99.2%) based on the 16S rRNA gene sequence analysis. Both strains fermented a wide variety of sugar residues typically found in lignocellulosic materials, and some polysaccharides. In the batch cultivations, strain AK17 produced ethanol from glucose and xylose fermentations of up to 1.6 mol-EtOH/mol-glucose (80% of the theoretical maximum) and 1.1 mol-EtOH/mol-xylose (66%), respectively. The hydrogen yields by AK17 were up to 1.2 mol-H2/ mol-glucose (30% of the theoretical maximum) and 1.0 mol-H2/mol-xylose (30%). The strain AK15 produced hydrogen as the main fermentation product from glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose (1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated exogenously added ethanol up to 4% (v/v). The ethanol and hydrogen production performance from glucose by a co-culture of the strains AK15 and AK17 was studied in a continuous-flow bioreactor at 60 degrees C. Stable and continuous ethanol and hydrogen co-production was achieved with ethanol yield of 1.35 mol-EtOH/mol-glucose, and with the hydrogen production rate of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed that the AK17 became the dominant bacterium in the bioreactor. In conclusion, strain AK17 is a promising strain for the co-production of ethanol and hydrogen with a wide substrate utilization spectrum, relatively high ethanol tolerance, and ethanol yields among the highest reported for thermoanaerobes. 相似文献
2.
3.
Dark fermentative hydrogen gas production from cheese whey powder solution was realized at 55°C. Experiments were performed at different initial biomass concentrations varying between 0.48 and 2.86 g L?1 with a constant initial substrate concentration of 26 ± 2 g total sugar (TS) per liter. The highest cumulative hydrogen evolution (633 mL, 30°C), hydrogen yield (1.56 mol H2 mol?1 glucose), and H2 formation rate (3.45 mL h?1) were obtained with 1.92 g L?1 biomass concentration. The specific H2 production rate decreased with increasing biomasss concentration from the highest value (47.7 mL g?1 h?1) at 0.48 g L?1 biomass concentration. Total volatile fatty acid concentration varied beetween 10 and 14 g L?1 with the highest level of 14.2 g L?1 at biomass concentration of 0.48 g L?1 and initial TS content of 28.4 g L?1. The experimental data were correlated with the Gompertz equation and the constants were determined. The most suitable initial biomass to substrate ratio yielding the highest H2 yield and formation rate was 0.082 g biomass per gram of TS. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 931–936, 2012 相似文献
4.
An integrated biological process for the production of hydrogen based on thermophilic and photo‐heterotrophic fermentation was evaluated from a technical and economic standpoint. Besides the two fermentation steps the process also includes pretreatment of the raw material (potato steam peels) and purification of hydrogen using amine absorption. The study aimed neither at determining the absolute cost of biohydrogen nor at an economic optimization of the production process, but rather at studying the effects of different parameters on the production costs of biohydrogen as a guideline for future improvements. The effect of the key parameters, hydrogen productivity and yield and substrate concentration in the two fermentations on the cost of the hydrogen produced was studied. The selection of the process conditions was based mainly on laboratory data. The process was simulated by use of the software Aspen Plus and the capital costs were estimated using the program Aspen Icarus Process Evaluator. The study shows that the photo‐fermentation is the main contributor to the hydrogen production cost mainly because of the cost of plastic tubing, for the photo‐fermentors, which represents 40.5% of the hydrogen production cost. The costs of the capital investment and chemicals were also notable contributors to the hydrogen production cost. Major economic improvements could be achieved by increasing the productivity of the two fermentation steps on a medium‐term to long‐term scale. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
5.
6.
7.
With its high energy content and clean combustion, hydrogen is recognized as a renewable clean energy source with enormous potential. Biological hydrogen production is a promising alternative with significant advantages over conventional petroleum‐derived chemical processes. Sustainable hydrogen production from renewable resources such as cassava, wastewater, and other agricultural waste is economically feasible for industrial applications. So far, the major bottlenecks in large‐scale biological hydrogen production are the low production rate and yield. This review discusses the various factors that affect the metabolic pathways of dark hydrogen production, and highlights the state‐of‐the‐art development of mixed culture technology. The aim of this review is to provide suggestions for the future directions of mixed culture technology, as well as by‐product valorization in dark fermentation. 相似文献
8.
Prawit Kongjan Sompong O‐Thong Meher Kotay Booki Min Irini Angelidaki 《Biotechnology and bioengineering》2010,105(5):899-908
Hydrolysate was tested as substrate for hydrogen production by extreme thermophilic mixed culture (70°C) in both batch and continuously fed reactors. Hydrogen was produced at hydrolysate concentrations up to 25% (v/v), while no hydrogen was produced at hydrolysate concentration of 30% (v/v), indicating that hydrolysate at high concentrations was inhibiting the hydrogen fermentation process. In addition, the lag phase for hydrogen production was strongly influenced by the hydrolysate concentration, and was prolonged from approximately 11 h at the hydrolysate concentrations below 20% (v/v) to 38 h at the hydrolysate concentration of 25% (v/v). The maximum hydrogen yield as determined in batch assays was 318.4 ± 5.2 mL‐H2/g‐sugars (14.2 ± 0.2 mmol‐H2/g‐sugars) at the hydrolysate concentration of 5% (v/v). Continuously fed, and the continuously stirred tank reactor (CSTR), operating at 3 day hydraulic retention time (HRT) and fed with 20% (v/v) hydrolysate could successfully produce hydrogen. The hydrogen yield and production rate were 178.0 ± 10.1 mL‐H2/g‐sugars (7.9 ± 0.4 mmol H2/g‐sugars) and 184.0 ± 10.7 mL‐H2/day Lreactor (8.2 ± 0.5 mmol‐H2/day Lreactor), respectively, corresponding to 12% of the chemical oxygen demand (COD) from sugars. Additionally, it was found that toxic compounds, furfural and hydroxymethylfurfural (HMF), contained in the hydrolysate were effectively degraded in the CSTR, and their concentrations were reduced from 50 and 28 mg/L, respectively, to undetectable concentrations in the effluent. Phylogenetic analysis of the mixed culture revealed that members involved hydrogen producers in both batch and CSTR reactors were phylogenetically related to the Caldanaerobacter subteraneus, Thermoanaerobacter subteraneus, and Thermoanaerobacterium thermosaccharolyticum. Biotechnol. Bioeng. 2010;105: 899–908. © 2009 Wiley Periodicals, Inc. 相似文献
9.
Abreu AA Alves JI Pereira MA Sousa DZ Alves MM 《Biotechnology and bioengineering》2011,108(8):1766-1775
Treatment of anaerobic granules with heat and two chemical treatments, contacting with 2-bromoethanesulfonate (BES) and with BES + Chloroform, were applied to suppress hydrogen-consuming microorganisms. Three mesophilic expanded granular sludge bed (EGSB) reactors-R(Heat), R(BES), and R(BES + Chlo)--were inoculated with the treated sludges and fed with synthetic sugar-based wastewater (5 g(COD) L(-1), HRT 20-12 h). Morphological integrity of granules and bacterial communities were assessed by quantitative image analysis and 16S rRNA gene based techniques, respectively. Hydrogen production in R(Heat) was under 300 mL H(2) L(-1) day(-1), with a transient peak of 1,000 mL H(2) L(-1) day(-1) after decreasing HRT. In R(BES + Chlo) hydrogen production rate did not exceed 300 mL H(2) L(-1) day(-1) and there was granule fragmentation, release of free filaments from aggregates, and decrease of granule density. In R(BES), there was an initial period with unstable hydrogen production, but a pulse of BES triggered its production rate to 700 ± 200 mL H(2) L(-1) day(-1). This strategy did not affect granules structure significantly. Bacteria branching within Clostridiaceae and Ruminococcaceae were present in this sludge. This work demonstrates that, methods applied to suppress H(2)-consuming microorganisms can cause changes in the macro- and microstructure of granular sludge, which can be incompatible with the operation of high-rate reactors. 相似文献
10.
Clostridium paraputrificum M-21发酵制氢培养条件研究 总被引:8,自引:1,他引:8
利用类腐败梭状芽孢杆菌M-21(Clostridium paraputn M-21),在37℃、150r/min条件下发酵制氢,以葡萄糖为碳源,蛋白胨为氮源,lmol的葡萄糖可以产生1.05mol的氢气,最终所产气体中有70%H2和30%c02(体积百分数)。最优初始pH范围为7.0—7.5,少量乙酸的存在对氢气的生成有促进作用,若大量存在,会严重抑制茵的生长。在C/N质量比为1.0时,所产氢气体积最多,1g葡萄糖可产生75mL Hz(常温常压)。在高温83℃下对种茵预处理30s促进孢子的萌发,会缩短发酵产氢的时间。以淀粉为碳源,所产氢气体积略微高于葡萄糖,1g淀粉可产生78mL H2(常温常压);以蔗糖为碳源,所产氢气体积略微低于葡萄糖,1g蔗糖可产生72mL H2(常温常压)。该茵不能降解利用羧甲基纤维素,木质素磺酸钠,及纸浆等。 相似文献
11.
Biniam T. Maru Magda Constanti Alberto M. Stchigel Francesc Medina Jesus E. Sueiras 《Biotechnology progress》2013,29(1):31-38
Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013 相似文献
12.
Conversion of food waste into hydrogen by thermophilic acidogenesis 总被引:11,自引:0,他引:11
Conversion of food waste into hydrogen by thermophilic acidogenesis was investigated as a function of organic loading rate (OLR), hydraulic retention time (HRT) and pH in a continuous stirred tank reactor. In order to identify hydrogen-producing microorganisms, denaturing gradient gel electrophoresis (DGGE) of the polymerase chain reaction (PCR) – amplified V3 region of 16S rDNA analysis was conducted at each tested pH. The conversion of food waste into hydrogen was strongly influenced by the operational conditions. The hydrogen production was increased as OLR increased up to 8gVSl-1d-1, but drastically decreased at 10gVSl-1d-1. The yield of hydrogen was decreased from 2.2 to 1.0mol-H2/mol-hexose consumed as HRT decreased from 5 to 2days. More carbohydrates in the food waste were decomposed at longer HRT, 76–90%, at HRT of 2–5days. The hydrogen production peaked at pH 5.5±0.1 and significantly decreased at pH 5.0±0.1. The biogas produced was composed of hydrogen and carbon dioxide, but no methane was detected at all tested conditions. The hydrogen contents in the gas produced were more than 55% (v/v) and not sensitive to all tested conditions. The optimum operational condition for continuous hydrogen production from the food waste was obtained at 8gVSl-1d-1, 5 days HRT and pH 5.5±0.1 where the hydrogen production rate, content, yield and the efficiency of carbohydrate decomposition were 1.0l H2/l-d, 60.5% (v/v), 2.2mol-H2/mol-hexose consumed and 90%, respectively. The hydrogen production was related with the concentration of total organic acids (TOA) which was strongly dependent on that of butyrate indicating that the reaction was mainly butyrate fermentation. The hydrogen-producing microorganism of Thermoanaerobacterium thermosaccharolyticum that involved in acetate/butyrate fermentation, was detected with strong intensity at all tested pHs by denaturing gradient gel electrophoresis (DGGE) of the polymerase chain reaction (PCR) – amplified V3 region of 16S rDNA analysis and sensitive to the tested pHs. The experimental results indicated that effective hydrogen production from the food waste could be obtained continuously by thermophilic acidogenesis at proper operational condition. 相似文献
13.
厌氧发酵法生物制氢的研究现状和发展前景 总被引:5,自引:0,他引:5
卢文玉刘铭辉陈宇闻建平 《中国生物工程杂志》2006,26(7):99-104
氢气是一种理想的能源,具有转化率高、可再生和无污染等优点。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害,其中的厌氧发酵生物制氢已经越来越受到人们的重视。本文主要介绍了厌氧发酵生物制氢技术的方法和机理,分析了生物制氢的可行性,结合国内外研究现状提出了未来的发展方向。 相似文献
14.
For the transition to the hydrogen economy, hydrogen must be produced sustainably, e.g., by the fermentation of agricultural material. Continuous fermentative production of hydrogen from an insoluble substrate in nonsterile conditions is yet to be reported. In this study hydrogen production using mixed microflora from heat-treated digested sewage sludge in nonsterile conditions from a particulate co-product of the wheat flour industry (7.5 g L(-1) total hexose) at 18- and 12-hour hydraulic retention times, pH 4.5 and 5.2, 30 degrees C and 35 degrees C was examined. In continuous operation, hydrogen yields of approximately 1.3 moles hydrogen/mole hexose consumed were obtained, but decreased if acetate or propionate levels rose, indicating metabolism shifted towards hydrogen consumption by homoacetogenesis or propionate producers. These shifts occurred both at pH 4.5 and 5.2. Sparging the reactor with nitrogen to reduce hydrogen in the off-gas from 50% to 7% gave stable operation with a hydrogen yield of 1.9 moles hydrogen /mole hexose consumed over an 18-day period. 相似文献
15.
Photooxidation products of amino acid residues of lysozyme were identified as kynurenine and 3-oxykynurenine from tryptophan, alanine from histidine, methionine sulfoxide and methionine sulfone from methionine, cysteic acid from cystine, glutamic acid from arginine and serine from tyrosine by isolating peptides in tryptic hydrolysate, although the yield of each product did not always reach 100%.Higher intensity of incident rays caused breakage of peptide chain, the mechanism of which was divided into two steps; the first predominated at the earlier stage of illumination with oxidation of tryptophan, the second predominated at the later stage of illumination accompaning the formation of amide and α-keto acid groups.Carbonyls and peroxides liberated during illumination were also determined. 相似文献
16.
Katharina Miebach Maurice Finger Alexandra Maria Katarina Scherer Constantin Alexander Maaß Jochen Büchs 《Biotechnology and bioengineering》2023,120(8):2199-2213
H2-producing microorganisms are a promising source of sustainable biohydrogen. However, most H2-producing microorganisms are anaerobes, which are difficult to cultivate and characterize. While several methods for measuring H2 exist, common H2 sensors often require oxygen, making them unsuitable for anaerobic processes. Other sensors can often not be operated at high gas humidity. Thus, we applied thermal conductivity (TC) sensors and developed a parallelized, online H2 monitoring for time-efficient characterization of H2 production by anaerobes. Since TC sensors are nonspecific for H2, the cross-sensitivity of the sensors was evaluated regarding temperature, gas humidity, and CO2 concentrations. The systems' measurement range was validated with two anaerobes: a high H2-producer (Clostridium pasteurianum) and a low H2-producer (Phocaeicola vulgatus). Online monitoring of H2 production in shake flask cultivations was demonstrated, and H2 transfer rates were derived. Combined with online CO2 and pressure measurements, molar gas balances of the cultivations were closed, and an anaerobic respiration quotient was calculated. Thus, insight into the effect of medium components and inhibitory cultivation conditions on H2 production with the model anaerobes was gained. The presented online H2 monitoring method can accelerate the characterization of anaerobes for biohydrogen production and reveal metabolic changes without expensive equipment and offline analysis. 相似文献
17.
Shastik ES Vokhmyanina DV Zorin NA Voronin OG Karyakin AA Tsygankov AA 《Enzyme and microbial technology》2011,49(5):453-458
This work describes the first step towards combination of the bioreactor with a starch-degrading microbial consortium and hydrogenase electrode (HE) in one unit for electricity generation. For this purpose, the bioreactor for microbial fermentation was designed with a set of electrodes (pH-sensor, Ag|AgCl reference electrode, Pt-electrode, and HE) inside the bioreactor. Potentials of all electrodes and H2 accumulation were monitored in the system under the precise pH control. Results obtained with the hydrogen-producing microbial consortium indicated that HE generates the potential equal to the H2|2H+ equilibrium potential. Furthermore, HE was able to catalyze the current generation (200 μA) by consuming H2 gas produced in the microbial consortium from starch. After 220 h of operation, HE retained at least 81% of the initial activity. Calculations of carbon balance indicated that fermentation products were similar in microbial cells without HE and with HE generating the current due to H2 consumption. 相似文献
18.
随着能源紧缺的日益加剧,以及化石燃料燃烧引起的环境问题逐渐突显,氢能作为一种清洁可再生能源越来越受到青睐。生物制氢与热化学及电化学制氢相比其反应条件温和、低耗、绿色,是一项非常有应用前景的技术。生物制氢从广义上可以分为暗发酵和光发酵产氢两种,其中暗发酵微生物可以利用有机废弃物产生氢气以及有机酸等副产物,光合细菌在光照和固氮酶的作用下可以将暗发酵产生的有机酸继续用于产氢,因此两种发酵产氢方式相结合可以提高有机废物的资源化效率。将近年来暗发酵-光发酵两阶段生物制氢技术进行整理分析,从其产氢机理、主要影响因素、暗发酵-光发酵产氢结合方式(两步法、混合培养产氢)几个方面进行阐述,最后指出该技术面临的挑战。 相似文献
19.
Microbial community composition dynamics was studied during H(2) fermentation from glucose in a fluidized-bed bioreactor (FBR) aiming at obtaining insight into the H(2) fermentation microbiology and factors resulting in the instability of biofilm processes. FBR H(2) production performance was characterised by an instable pattern of prompt onset of H(2) production followed by rapid decrease. Gradual enrichment of organisms increased the diversity of FBR attached and suspended-growth phase bacterial communities during the operation. FBR bacteria included potential H(2) producers, H(2) consumers and neither H(2) producers nor consumers, and those distantly related to any known organisms. The prompt onset of H(2) production was due to rapid growth of Clostridium butyricum (99-100%) affiliated strains after starting continuous feed. The proportion trend of C. butyricum in FBR attached and suspended-growth phase communities coincided with H(2) and butyrate production. High glucose loading rate favoured the H(2) production by Escherichia coli (100%) affiliated strain. Decrease in H(2) production, associated with a shift from acetate-butyrate to acetate-propionate production, was due to changes in FBR attached and suspended-growth phase bacterial community compositions. During the shift, organisms, including potential propionate producers, were enriched in the communities while the proportion trend of C. butyricum decreased. We suggest that the instability of H(2) fermentation in biofilm reactors is due to enrichment and efficient adhesion of H(2) consumers on the carrier and, therefore, biofilm reactors may not favour mesophilic H(2) fermentation. 相似文献
20.
Thermophilic H2 production from glucose was studied at 55-64 degrees C for 234 days using a continuous trickling biofilter reactor (TBR) packed with a fibrous support matrix. Important parameters investigated included pH, temperature, hydraulic retention time (HRT), and glucose concentration in the feed. The optimal pH and temperature were 5.5 and 60 degrees C, respectively. With decreasing HRT or increasing inlet glucose concentration, volumetric H2 production rate increased but the H2 production yield to glucose decreased gradually. The biogas composition was almost constant at 53 +/- 4% (v/v) of H2 and 47 +/- 4% (v/v) of CO2. No appreciable CH4 was detected when the reactor was under a normal operation. The carbon mass balance showed that, in addition to cell mass, lactate, n-butyrate, CO2, and acetate were major products that comprised more than 85% of the carbon consumed. The maximal volumetric H2 production rate and H2 yield to glucose were 1,050 +/- 63 mmol H2/l.d and 1.11 +/- 0.12 mol H2/mol glucose, respectively. These results indicate that the thermophilic TBR is superior to most suspended or immobilized reactor systems reported thus far. This is the first report on continuous H2 production by a thermophilic TBR system. 相似文献