首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
Studies from our laboratory have demonstrated that leptin inhibits galactose absorption in vitro by acting on the Na(+)/glucose cotransporter SGLT1. Since PKC and PKA are involved in the regulation of SGLT1 and leptin is able to activate these kinases, we have investigated the possible implication of PKC and PKA in the inhibition of sugar absorption by leptin in rat small intestinal rings. Inhibition of 1 mM galactose uptake by 0.2 nM leptin is blocked by 2 microM chelerythrine, a PKC inhibitor, which by itself does not affect galactose uptake. However, 1 microM H-89, a PKA inhibitor, inhibits galactose uptake and does not block leptin inhibition. Biochemical assays show that the inhibitory effect of leptin is accompanied by a approximately 2-fold increase in PKA and PKC activity. These findings indicate that the activation of PKC is more relevant than PKA activation in the inhibition of galactose absorption by leptin.  相似文献   

8.
9.
We sought to characterize expression of an apically expressed intestinal Na-P(i) cotransporter (Na-P(i)-IIb) during mouse ontogeny and to assess the effects of methylprednisolone (MP) treatment. In control mice, Na-P(i) uptake by intestinal brush-border membrane vesicles was highest at 14 days of age, lower at 21 days, and further reduced at 8 wk and 8-9 mo of age. Na-P(i)-IIb mRNA and immunoreactive protein levels in 14-day-old animals were markedly higher than in older groups. MP treatment significantly decreased Na-P(i) uptake and Na-P(i)-IIb mRNA and protein expression in 14-day-old mice. Additionally, the size of the protein was smaller in 14-day-old mice. Deglycosylation of protein from 14-day-old and 8-wk-old animals with peptide N-glycosidase reduced the molecular weight to the predicted size. We conclude that intestinal Na-P(i) uptake and Na-P(i)-IIb expression are highest at 14 days and decrease with age. Furthermore, MP treatment reduced intestinal Na-P(i) uptake approximately threefold in 14-day-old mice and this reduction correlates with reduced Na-P(i)-IIb mRNA and protein expression. We also demonstrate that Na-P(i)-IIb is an N-linked glycoprotein and that glycosylation is age dependent.  相似文献   

10.
We report the cloning of the murine Na/P(i)-IIb cotransporter gene, which spans more than 18 kilobases and consists of 12 introns and 13 exons. Three promoter/reporter gene constructs, -159/+73, -429/+73 and -954/+73, showed significant luciferase activity (22-82-fold over background) when transfected into in rat intestinal epithelial (RIE-1) cells.  相似文献   

11.
12.
Effect of epinephrine on alpha-methyl-D-glucopyranoside uptake in renal proximal tubule cells. Epinephrine has known to be a very important factor in the regulation of renal sodium excretion. However, the effect of epinephrine on Na+/glucose cotransporter was not fully elucidated. Thus, we examined effect of epinephrine on alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its related signal pathways in the primary cultured rabbit renal proximal tubule cells (PTCs). Epinephrine inhibited alpha-MG uptake in a time- and dose-dependent manner and also decreased SGLT1 and SGLT2 protein level. Both phentolamine and propranolol completely prevented epinephrine-induced inhibition of alpha-MG uptake. The epinephrine-induced inhibition of alpha-MG uptake was blocked by SQ-22536 or myristoylated PKA inhibitor amide 14-22 and epinephrine increased the intracellular cAMP content. In western blotting analysis, epinephrine increases phosphorylation of p44/42 and p38 MAPKs and PD 98059 or SB 203580 blocked the effect of epinephrine. In addition, epinephrine increased AA release and PGE2 production and effects of epinephrine on alpha-MG uptake and AA release were blocked by staurosporine and bisindolylmaleimide I or mepacrine and AACOCF3. Indeed, epinephrine translocated PKC or cPLA2 from cytosol to membrane fraction. In conclusion, epinephrine partially inhibits the alpha-MG uptake through PKA, PKC, p44/42, p38 MAPK, and cPLA2 pathways in the PTCs.  相似文献   

13.
14.
Murine embryonic palate mesenchyme (MEPM) cells are responsive to a number of endogenous factors found in the local embryonic tissue environment. Recently, it was shown that activation of the cyclic AMP (cAMP) or the transforming growth factor β (TGFβ) signal transduction pathways modulates the proliferative response of MEPM cells to epidermal growth factor (EGF). Since the mitogen-activated protein kinase (MAPK) cascade is a signal transduction pathway that mediates cellular responsiveness to EGF, we examined the possibility that several signaling pathways which abrogate EGF-stimulated proliferation do so via the p42/p44 MAPK signaling pathway. We demonstrate that EGF stimulates MAPK phosphorylation and activity in MEPM cells maximally at 5 minutes. Tyrosine phosphorylation and activation of MAPK was unaffected by treatment of MEPM cells with TGFβ or cholera toxin. Similarly, TGFβ altered neither EGF-induced MAPK tyrosine phosphorylation nor activity. However, the calcium ionophore, A23187, significantly increased MAPK phosphorylation which was further increased in the presence of EGF, although calcium mobilization reduced EGF-induced proliferation. Despite the increase in phosphorylation, we could not demonstrate induction of MAPK activity by A23187. Like EGF, phorbol ester, under conditions which activate PKC isozymes in MEPM cells, increased MAPK phosphorylation and activity but was also growth inhibitory to MEPM cells. The MEK inhibitor, PD098059, only partially abrogated EGF-induced phosphorylation. Likewise, depletion of PKC isozymes partially abrogated EGF-induced MAPK phosphorylation. Inhibition of both MEK and PKC isozymes resulted in a marked decrease in MAPK activity, confirming that EGF uses multiple pathways to stimulate MAPK activity. These data indicate that the MAPK cascade does not mediate signal transduction of several agents that inhibit growth in MEPM cells, and that there is a dissociation of the proliferative response and MAP kinase activation. Furthermore, other signaling pathways known to play significant roles in differentiation of palatal tissue converge with the MAPK cascade and may use this pathway in the regulation of alternative cellular processes. J. Cell. Physiol. 176:266–280, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare disorder of autosomal recessive inheritance that was first described in a large consanguineous Bedouin kindred. HHRH is characterized by the presence of hypophosphatemia secondary to renal phosphate wasting, radiographic and/or histological evidence of rickets, limb deformities, muscle weakness, and bone pain. HHRH is distinct from other forms of hypophosphatemic rickets in that affected individuals present with hypercalciuria due to increased serum 1,25-dihydroxyvitamin D levels and increased intestinal calcium absorption. We performed a genomewide linkage scan combined with homozygosity mapping, using genomic DNA from a large consanguineous Bedouin kindred that included 10 patients who received the diagnosis of HHRH. The disease mapped to a 1.6-Mbp region on chromosome 9q34, which contains SLC34A3, the gene encoding the renal sodium-phosphate cotransporter NaP(i)-IIc. Nucleotide sequence analysis revealed a homozygous single-nucleotide deletion (c.228delC) in this candidate gene in all individuals affected by HHRH. This mutation is predicted to truncate the NaP(i)-IIc protein in the first membrane-spanning domain and thus likely results in a complete loss of function of this protein in individuals homozygous for c.228delC. In addition, compound heterozygous missense and deletion mutations were found in three additional unrelated HHRH kindreds, which supports the conclusion that this disease is caused by SLC34A3 mutations affecting both alleles. Individuals of the investigated kindreds who were heterozygous for a SLC34A3 mutation frequently showed hypercalciuria, often in association with mild hypophosphatemia and/or elevations in 1,25-dihydroxyvitamin D levels. We conclude that NaP(i)-IIc has a key role in the regulation of phosphate homeostasis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号