首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary In pot experiments grape vine was grown on a calcareous and on a non calcareous soil with a low and with a high water saturation. During the growing period soil solution samples were collected and analyzed for their pH and for HCO 3 , phosphate, Fe, and Ca. High water saturation resulted in a pH increase and in an increase of the HCO 3 concentration in both soils. The level in pH and HCO 3 , however, was much higher in the calcareous soil than in the non calcareous soil. The Fe concentration varied much throughout the experimental period, but there was no major differences between soils and water saturation treatments. The Ca concentration of the soil solution increased with time in the calcareous soil; for the non calcareous soil rather the reverse was true. The phosphate level in the soil solution of the non calcareous soil was about 10 times higher than in the calcareous soil. After 3 weeks growth all plants of the calcareous soil with the high water saturation showed first symptoms of Fe deficiency. These became more intense from day to day. Plants of the other treatments did not show any chlorotic symptoms. In the treatment with the chlorotic plants the HCO 3 concentration of the soil solution was the highest, the phosphate concentration the lowest from all treatments. It is therefore concluded that HCO 3 and not phosphate is the primary cause for lime induced Fe chlorosis. Despite the low phosphate concentration in the soil solution, the P concentration in the chlorotic leaves was more than twice as high as the P concentration in green leaves grown on the same soil. It is thus assumed that the high P content frequently found in chlorotic leaves is the result and not the cause for Fe chlorosis.  相似文献   

2.
Iron (Fe) deficiency restricts crop yields in calcareous soil. Thus, a novel Fe chelator, proline-2′-deoxymugineic acid (PDMA), based on the natural phytosiderophore 2′-deoxymugineic acid (DMA), was developed to solve the Fe deficiency problem. However, the effects and mechanisms of PDMA relevant to the Fe nutrition and yield of dicots grown under field conditions require further exploration. In this study, pot and field experiments with calcareous soil were conducted to investigate the effects of PDMA on the Fe nutrition and yield of peanuts. The results demonstrated that PDMA could dissolve insoluble Fe in the rhizosphere and up-regulate the expression of the yellow stripe-like family gene AhYSL1 to improve the Fe nutrition of peanut plants. Moreover, the chlorosis and growth inhibition caused by Fe deficiency were significantly diminished. Notably, under field conditions, the peanut yield and kernel micronutrient contents were promoted by PDMA application. Our results indicate that PDMA promotes the dissolution of insoluble Fe and a rich supply of Fe in the rhizosphere, increasing yields through integrated improvements in soil-plant Fe nutrition at the molecular and ecological levels. In conclusion, the efficacy of PDMA for improving the Fe nutrition and yield of peanut indicates its outstanding potential for agricultural applications.  相似文献   

3.
4.
Summary Iron chlorosis of 4 year old Scots pine (Pinus sylvestris L.) in comparison to areas of adjacent healthy growth on calcareous prairie soil, was associated with slight increases in the soluble ion content of the saturation paste extract. Such increases in soluble ions (mainly calcium sulphate) were associated with significant increases in ash, cation (including iron) and organic anion content of the chlorotic needles. Increasing levels of available soil nitrate were also related to increase in organic anions. Nitrogen and phosphorus assimilation was adversely affected under conditions of iron chlorosis. These observations support the theory of induced iron deficiency associated with elevated levels of organic anions or translocated cations and are applicable to plantings of conifers on prairie soils.  相似文献   

5.
Peanut/maize intercropping is a sustainable and effective agroecosystem that evidently enhances the Fe nutrition of peanuts in calcareous soils. So far, the mechanism involved in this process has not been elucidated. In this study, we unravel the effects of phytosiderophores in improving Fe nutrition of intercropped peanuts in peanut/maize intercropping. The maize ys3 mutant, which cannot release phytosiderophores, did not improve Fe nutrition of peanut, whereas the maize ys1 mutant, which can release phytosiderophores, prevented Fe deficiency, indicating an important role of phytosiderophores in improving the Fe nutrition of intercropped peanut. Hydroponic experiments were performed to simplify the intercropping system, which revealed that phytosiderophores released by Fe‐deficient wheat promoted Fe acquisition in nearby peanuts and thus improved their Fe nutrition. Moreover, the phytosiderophore deoxymugineic acid (DMA) was detected in the roots of intercropped peanuts. The yellow stripe1‐like (YSL) family of genes, which are homologous to maize yellow stripe 1 (ZmYS1), were identified in peanut roots. Further characterization indicated that among five AhYSL genes, AhYSL1, which was localized in the epidermis of peanut roots, transported Fe(III)–DMA. These results imply that in alkaline soil, Fe(III)–DMA dissolved by maize might be absorbed directly by neighbouring peanuts in the peanut/maize intercropping system.  相似文献   

6.
Lime-induced iron chlorosis is a major nutritional disorder causing severe plant growth and yield reduction in the calcareous soils of Tunisia. The understanding the behavior of key metabolic functions of peas on calcareous soils, the identification of useful traits of tolerance, and the exploration of the genotypic differences in response to this constraint remain the most efficient approaches due to their coast, environmental benefits, and sustainability. For this purpose, a greenhouse experiment was conducted on three pea genotypes (Alexandra: Alex, Douce de provence: DP, and Merveille de Kelvedon: MK) cultivated on calcareous soil (Fe-deficient) and fertile soil (control). Plant growth, SPAD index, iron nutrition and distribution, photosynthesis, and antioxidant enzymes were deeply analyzed to discriminate genotypic differences. Calcareous-induced iron deficiency reduced SPAD index, plant growth, net photosynthesis, and tissue Fe content against a significant stimulation of the oxidative stress indicators, H2O2 and Malondialdehyde (MDA). Moreover, we reported a significant induction of SOD and CAT activity in shoots and roots of the Alexandra genotype. Fe use efficiency increased on calcareous soil and clearly discriminated the studied genotypes. Alexandra genotype was found to be the most tolerant to lime-induced iron chlorosis. This genotype protects its tissues against oxidative stress by stimulating enzyme activities (SOD and CAT) and develops significant efficiency of Fe uptake, translocation to shoots and use when cultivated on calcareous soil.  相似文献   

7.
玉米、小麦与花生间作改善花生铁营养机制的探讨   总被引:15,自引:1,他引:14  
采用土培盆栽方法模拟研究了玉米/花生、小麦/花生间作对花生铁营养状况的影响及其作用机制。结果表明,禾本科作物与花生间作对花生的铁营养状况有显著影响:当花生与玉米或小麦分别间作时,花生新叶叶色正常,而花生单作则表现出严重的缺铁黄化现象,间作花生新叶活性铁、叶绿素含量明显高于单作,两种间作花生各部位铁含量和吸收量明显高于单作,间作明显地促进了铁向花生地上部的转移;在单作花生表现缺铁症状14d的时间范围内,其根系质外体铁含量仅是间作花生的52%~80%;而根系还原力则是单作花生在表现缺铁症状后迅速提高,至缺铁第6d时还原力达到最大值,随后花生根系还原力迅速下降,而间作花生在0~14d内还原力增加速度缓慢,在10~14d中其根系还原力明显地高于单作花生根系还原力。其主要原因可能是禾本科作物玉米、小麦根系分泌物(如:麦根酸类植物铁载体)螯合土壤中难溶性铁并被花生吸收利用。  相似文献   

8.
Brand  J.D.  Tang  C.  Graham  R.D. 《Plant and Soil》2000,219(1-2):263-271
Commercial narrow-leafed lupins (Lupinus angustifolius L.) grown on calcareous soils commonly display chlorotic symptoms resembling Fe deficiency. The severity of chlorosis increases with concurrent increases in soil moisture content. Our research has indicated that the rough-seeded lupin species, Lupinus pilosus Murr., has a range of adaptation to calcareous soils, from tolerant to intolerant. A pot experiment was conducted comparing a tolerant, a moderately tolerant and a moderately intolerant genotype of L. pilosus. Plants were grown for 35 days in a calcareous soil (50% CaCO3) at three moisture contents (80%, 100% and 120% of field capacity); the growth was compared with that on a fertile black cracking clay control soil at 70% of field capacity. Visual chlorosis score, chlorophyll meter readings, number of leaves and shoot dry weights were recorded at 14, 21, 28 and 35 days after sowing. Concentrations of chlorophyll, active Fe and nutrients in the youngest fully expanded leaves were also measured. Results showed that increased soil moisture increased the severity of chlorotic symptoms (increased chlorosis score) in all genotypes. The tolerant genotype showed significantly less symptoms than other genotypes at all moisture contents. All genotypes were able to recover from chlorosis symptoms at 80% moisture in the calcareous soil. Chlorosis score negatively correlated with chlorophyll meter readings, chlorophyll concentration and foliar active and total Fe, and Mn concentrations. Visual chlorosis score appeared to be a cost effective, accurate and efficient method enabling classification of the tolerance of genotypes. The chlorotic symptoms were likely to be due to HCO3 - induced nutrient deficiencies or a direct effect of HCO3 - on chlorophyll synthesis. This study indicates that the most probable mechanism of tolerance is related to an ability to prevent uptake of HCO3 - or efficiently sequester it once inside the root which prevents increases in internal pH and transport to the shoots.  相似文献   

9.
吉前华 《生态科学》2004,23(3):200-203
石灰性土壤上富含碳酸钙是导致柑桔缺铁黄化的主要因素。碳酸钙胁迫对枳壳愈伤组织生理影响的研究结果表明除全Fe含量外,CaCO3浓度与POD活性、SOD活性、CAT活性、活性Fe含量、可溶性蛋白质含量、愈伤组织增殖均呈显著或极显著负相关,与培养液pH值呈显著相关,随着培养天数的增加,POD活性、活性Fe含量、可溶性蛋白质含量、愈伤组织增殖呈降低趋势,SOD、CAT活性先升后降,全Fe含量在25日出现沉积,高浓度CaCO3下培养液pH值仅在20日左右略有降低。  相似文献   

10.
石灰性土壤上HCO3-诱导花生缺铁失绿机制   总被引:6,自引:1,他引:5  
采用土壤-营养液结合的分根培养方法,研究了部分根系供应HCO- 3或铁对花生铁营养的调控及其作用机制。结果表明,对花生部分根系供应HCO- 3或铁可以调控花生的铁营养,仅供HCO- 3可以诱导缺铁,而只供铁能矫正失绿,同时供应HCO- 3和铁时则不引起失绿。在花生新生叶失绿和复绿的过程中,其中的活性铁含量和全铁含量也有相应的消长。当花生表现缺铁失绿症状时,地上各部分的全铁含量显著降低,而土中根的全铁含量不降低、质外体铁含量升高。在HCO- 3存在的条件下,不同部分根系的铁( )还原酶活性因其生长介质而不同,营养液中根系的铁( )还原酶活性降低而土中根的铁( )还原酶活性不受影响。当花生表现缺铁失绿症状时,土壤中HCO- 3含量升高,有效铁含量不高,p H值无变化。因此,本试验证实了石灰性土壤上的高HCO- 3含量,主要是降低了花生地上部的铁含量而引起失绿,而且花生缺铁失绿又导致土壤HCO- 3含量升高  相似文献   

11.
Under certain conditions, olive trees grown on calcareous soils suffer from iron chlorosis. In the present study several olive varieties and scion-rootstock combinations were evaluated for their tolerance to iron chlorosis. Plants were grown over several months in pots with a calcareous soil, under two fertilization treatments. These consisted of periodic applications of nutrient solutions containing either, 30 μmol/L FeEDDHA or not Fe. Tolerance was assessed by the chlorosis and growth parameters of plants grown without Fe, compared to those plants grown with Fe. Results show that there are differences in tolerance among olive varieties and that tolerance is mainly determined by the genotype of the rootstock. These results open the way to use tolerant varieties for those conditions where iron chlorosis could become a problem.  相似文献   

12.
The severe deficiency of iron or ferric chlorosis is a serious problem of most citrus trees established in calcareous soils, as a result of the low availability of iron in these soils and the poor uptake and limited transport of this nutrient in trees. The objective of this study was to evaluate the response of chlorotic Italian lemon trees (Citrus lemon) to the application of iron compounds to roots and stems. On comparing the effects of aqueous solutions of ferric citrate, ferrous sulphate and FeEDDHA chelate, applied to 20% of the roots grown in soil and sand, of trees that were planted in pots containing calcareous soil, it was observed that the chelate fully corrected ferric chlorosis, while citrate and sulphate did not solve the problem. EDDHA induced the root uptake of iron as well as the movement of the nutrient up to the leaves. With the use of injections of ferric solutions into the secondary stem of adult trees, ferric citrate corrected chlorosis but ferrous sulphate did not. The citrate ion expanded the mobility of iron within the plant, from the injection points up to the leaves, whereas the sulphate ion did not sufficiently improve the movement of iron towards the leaf mesophyll.  相似文献   

13.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R 2 = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.  相似文献   

14.
本研究以晋西黄土丘陵区玉露香梨种植下的3种不同坡位坡耕地土壤为对象,对不同坡位、不同生育期、不同深度的土壤水分、养分和产量进行观测分析。结果表明: 不同坡位中,香梨产量为高坡位>中坡位>低坡位,高坡位香梨产量与土壤含水量(SWC)、有机质(SOM)、速效钾(AK)显著相关,其中AK对产量的影响最显著,中、低坡位香梨产量与SWC、SOM、全氮(TN)显著相关,其中SWC对产量的影响最显著;高坡位SWC、SOM、速效磷(AP)和TN含量高于中、低坡位,而中坡位AK含量最高。不同土层深度中,土壤养分含量在0~20 cm最高,20~40 cm最低,而SWC在0~20 cm显著低于其他土层,在20~40 cm最高。不同生育期中,开花期SOM、AP和TN含量最高,结果期SWC最高,成熟期AK含量最高。建议该区域在今后香梨水肥管理中,开花期高坡位应加强对K肥的施用,结果期以N、P复合肥施用为主。在中、低坡位应增加灌溉量,灌溉量在300 m3·hm-2可有效降低该区域水分对产量的限制。本研究可为黄土丘陵区香梨种植精准灌溉和科学施肥提供理论支持和数据参考。  相似文献   

15.
Plants are frequently submitted to iron deficiency when growing on calcareous soils, which contain high concentrations of bicarbonate. The purpose of this study was to investigate the variability of physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron chlorosis. Vine woodcuttings of seven autochthonous Tunisian varieties (Khamri, Mahdaoui, Blan3, Saouadi, Arich Dressé, Beldi and Balta4), two rootstocks (140Ru and S.O.4), and an introduced table variety (Cardinal) were cultivated on inert sand for 2 months using a complete nutrient solution (20 microM Fe) that was either well supplied or not supplied with 10 mM HCO3-. Young leaves of plants cultivated on bicarbonate-enriched medium showed characteristic symptoms of iron chlorosis, although the intensity of the symptoms depended on the variety and the rootstock. Chlorosis score confirmed these observations since the most sensitive varieties showed the highest values. This variability in tolerance to iron deficiency was also displayed when analysing the physiological parameters (shoot length, plant dry weight, and chlorophyll concentration) and the iron contents in the 4th leaf. Analysis of morphological and physiological parameters showed three behaviour groups. The first one corresponded to tolerant varieties (Khamri, Mahdaoui, and the root-stock: 140Ru), the second included moderately tolerant vines (Saouadi, Arich Dressé, Blanc3, and the rootstock: S.O.4) and the third represented the sensitive ones (Balta4, Beldi, and Cardinal).  相似文献   

16.
Five popular but iron-inefficient cultivars were crossed with three efficient genotypes and both parents and F1s were evaluated for iron-efficiency in potted calcareous and noncalcareous soil. The iron-efficient genotypes were dark green or green in both noncalcareous and calcareous soils whereas inefficient types were light green to yellow in calcareous soil. The chlorophyll and active iron (Fe2+) concentration of leaves was less in iron-efficient genotypes compared to efficient types in calcareous soil and reduction of both the parameters from noncalcareous to calcareous soil was considerably high in iron-inefficient lines. There was significant correlation between visual scores, chlorophyll and active iron content. There were no differences among F1s for iron chlorosis and they were all iron-inefficient. The frequency of iron-inefficient plants was higher than the efficient plants in all F2 populations. But most of the productive plants came from iron-efficient segregants indicating strong association between iron-efficiency and productivity. Based on the results selection for iron-efficiency in early generations and extensive evaluation for productivity in advanced generations is suggested for developing varieties for cultivation in calcareous soils.  相似文献   

17.
Iron chlorosis is very common on alkaline soils such as calcareous ones, since iron availability is limited by high pH. Under these conditions of iron deficiency, graminaceous plant species induce special mechanisms for iron acquisition, involving enhanced release of iron chelators called phytosiderophores. On the other hand, it is known that most of salt soils have alkaline pH. So, plants growing on this kind of soils are often subjected simultaneously to salinity and iron deficiency. This work aimed at (i) studying the physiological responses of barley (Hordeum vulgare L.) to iron deficiency, and (ii) evaluating the effect of salt on the iron nutrition and the phytosiderophore release. For this purpose, seedlings of Hordeum vulgare L. were cultivated under controlled conditions, either in a complete nutrient solution with or without NaCl, or in an iron free nutrient solution containing or not NaCl. The plant morphological aspect, chlorophyll content of young leaves, iron status, biomass production, and phytosiderophore release by roots were assessed. Plants subjected to Fe deficiency exhibited a severe chlorosis, accompanied by a significant biomass reduction. These plants developed more lateral roots than the control with a highly stimulated phytosiderophore release. However, the latter was greatly diminished when iron deficiency was associated to salinity. A depressive effect of salt on iron acquisition in plants subjected only to salt stress which was also observed and further confirmed by the important decrease of efficiency in iron acquisition. These results suggest that salinity may reduce capacity of plants to acquire iron from alkaline soils by inhibiting phytosiderophore release.  相似文献   

18.
Nitrate induced iron deficiency chlorosis in Juncus acutiflorus   总被引:1,自引:0,他引:1  
Chlorosis caused by iron deficiency is commonly associated with high bicarbonate levels in the soil. However, in rare cases such chlorosis has been observed in soils with high nitrate levels. In a dutch rich-fen, chlorosis has been noted in stands of Juncus acutiflorus at locations where groundwater containing high levels of nitrate reached the surface. Experiments revealed that the chlorosis could be attributed to iron deficiency although iron levels in the shoots were well above the known physiological threshold values for iron deficiency. It is postulated that increased nitrate assimilation leads to an increased apoplastic pH and to a concomitant immobilisation of iron and/or lower iron (III) reduction. Moreover free amino acid levels were markedly higher in the iron deficient plants in the field. It was found, however, that the percentage of nitrogen present as free amino acids was not influenced directly by low iron levels but mainly by the C/N ratios in the shoots. Nowadays, nitrate concentrations in ground water as high 1000 µM are no longer an exception in the Netherlands. We propose that strongly increased nitrate inputs may cause iron stress in natural vegetations, especially in wet habitats.  相似文献   

19.
This study examined the effects of exogenous nitric oxide (NO) on physiological characteristics of peanut (Arachis hypogaea L.) growing on calcareous soil. Sodium nitroprusside (SNP), a NO donor, was root application (directly; slow-release bag; slow-release capsule; slow-release particle) and foliar application. The results showed that SNP application alleviated iron (Fe) deficiency-induced chlorosis, increased the yield of peanut and increased the Fe concentration in peanut grain. SNP, especially supplied by slow-release particle improved the available Fe in soil by reducing pH of soil and increasing available Fe of soil. Furthermore, SNP application significantly increased the H+-ATPase and Fe3+ reductase activities and increased the total Fe concentration in the leaves. Meanwhile, SNP application, especially foliar application enhanced the availability of Fe in the plant by significantly increasing the active Fe content and chlorophyll content in the leaves. In addition, SNP also increased the antioxidant activities, but decreased the superoxide anion (O2??) generation rate and malondialdehyde content, which protected peanut against the Fe deficiency-induced oxidative stress. Therefore, these results support a physiological action of SNP on the availability, uptake and transport of Fe in the plant and foliar application SNP had the best effects in leaves and SNP supplied by slow-release particle had the best effects in roots. In addition, on the whole, the effects of SNP supplied by slow-release ways were better than directly supplied into the soil.  相似文献   

20.
Summary Nursery experiments were conducted to determine the cause for the chronic problem of chlorosis in paddy seedlings raised ongoradu soil nurseries of Anand area of Kheda district of Gujarat State and to find out remedial measures for it. The findings are (i) the chlorosis is due to high bicarbonate content of the soil (ii) application of ferrous sulphate to soil at 40 kg Fe/ha increased the survival period of the seedling but did not quite control the chlorosis (iii) spray of 0.4% ferrous sulphate solution twice a week was helpful in partial recovery of the seedlings from chlorosis (iv) acidulation of soil with sulphuric acid about ten days prior to sowing produced very healthy, vigorous and green seedlings of paddy which did not show any signs of chlorosis at all and (v) total and IN HCl-soluble iron content of the shoots did not at all reflect the degree of chlorosis of the paddy seedlings. These results are discussed in the light of current theories of absorption and translocation of iron in plant system and the iron-chlorosis of paddy seedlings ingoradu soils is attributed to both soil and plant factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号