首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabotropic Ca2+ channel-induced calcium release in vascular smooth muscle   总被引:2,自引:0,他引:2  
Contraction of vascular smooth muscle cells (VSMCs) depends on the rise of cytosolic [Ca(2+)] owing to either Ca(2+) influx through voltage-gated Ca(2+) channels of the plasmalemma or to receptor-mediated Ca(2+) release from the sarcoplasmic reticulum (SR). Although the ionotropic role of L-type Ca(2+) channels is well known, we review here data suggesting a new role of these channels in arterial myocytes. After sensing membrane depolarization Ca(2+) channels activate G proteins and the phospholipase C/inositol 1,4,5-trisphosphate (InsP(3)) pathway. Ca(2+) released through InsP(3)-dependent channels of the SR activates ryanodine receptors to amplify the cytosolic Ca(2+) signal, thus triggering arterial cerebral vasoconstriction in the absence of extracellular calcium influx. This metabotropic action of L-type Ca(2+) channels, denoted as calcium channel-induced Ca(2+) release, could have implications in cerebral vascular pharmacology and pathophysiology, because it can be suppressed by Ca(2+) channel antagonists and potentiated with small concentrations of extracellular vasoactive agents as ATP.  相似文献   

2.
Ca(+) sparklets are subcellular Ca(2+) signals produced by the opening of sarcolemmal L-type Ca(2+) channels. Ca(2+) sparklet activity varies within the sarcolemma of arterial myocytes. In this study, we examined the relationship between Ca(2+) sparklet activity and sarcoplasmic reticulum (SR) Ca(2+) accumulation and release in cerebral arterial myocytes. Our data indicate that the SR is a vast organelle with multiple regions near the sarcolemma of these cells. Ca(2+) sparklet sites were located at or <0.2 μm from SR-sarcolemmal junctions. We found that while Ca(2+) sparklets increase the rate of SR Ca(2+) refilling in arterial myocytes, their activity did not induce regional variations in SR Ca(2+) content or Ca(2+) spark activity. In arterial myocytes, L-type Ca(2+) channel activity was independent of SR Ca(2+) load. This ruled out a potential feedback mechanism whereby SR Ca(2+) load regulates the activity of these channels. Together, our data suggest a model in which Ca(2+) sparklets contribute Ca(2+) influx into a cytosolic Ca(2+) pool from which sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps Ca(2+) into the SR, indirectly regulating SR function.  相似文献   

3.
Store-operated Ca(2+) channels, which are activated by the emptying of intracellular Ca(2+) stores, provide one major route for Ca(2+) influx. Under physiological conditions of weak intracellular Ca(2+) buffering, the ubiquitous Ca(2+) releasing messenger InsP(3) usually fails to activate any store-operated Ca(2+) entry unless mitochondria are maintained in an energized state. Mitochondria rapidly take up Ca(2+) that has been released by InsP(3), enabling stores to empty sufficiently for store-operated channels to activate. Here, we report a novel role for mitochondria in regulating store-operated channels under physiological conditions. Mitochondrial depolarization suppresses store-operated Ca(2+) influx independently of how stores are depleted. This role for mitochondria is unrelated to their actions on promoting InsP(3)-sensitive store depletion, can be distinguished from Ca(2+)-dependent inactivation of the store-operated channels and does not involve changes in intracellular ATP, oxidants, cytosolic acidification, nitric oxide or the permeability transition pore, but is suppressed when mitochondrial Ca(2+) uptake is impaired. Our results suggest that mitochondria may have a more fundamental role in regulating store-operated influx and raise the possibility of bidirectional Ca(2+)-dependent crosstalk between mitochondria and store-operated Ca(2+) channels.  相似文献   

4.
In smooth muscle myocytes, agonist-activated release of calcium ions (Ca2+) stored in the sarcoplasmic reticulum (SR) occurs via different but overlapping transduction pathways. Hence, to fully study how SR Ca2+ channels are activated, the simultaneous activation of different Ca2+ signals should be separated. In rat duodenum myocytes, we have previously characterized that acetylcholine (ACh) induces Ca2+ oscillations by binding to its M2 muscarinic receptor and activating the ryanodine receptor subtype 2. Here, we show that ACh simultaneously evokes a Ca2+ signal dependent on activation of inositol 1,4,5-trisphosphate (InsP3) receptor subtype 1. A pharmacologic approach, the use of antisense oligonucleotides directed against InsP3R1, and the expression of a specific biosensor derived from green-fluorescent protein coupled to the pleckstrin homology domain of phospholipase C, suggested that the InsP3R1-dependent Ca2+ signal is transient and due to a transient synthesis of InsP3 via M3 muscarinic receptor. Moreover, we suggest that both M2 and M3 signalling pathways are modulating phosphatidylinositol 4,5-bisphosphate and InsP3 concentration, thus describing closely interacting pathways activated by ACh in duodenum myocytes.  相似文献   

5.
Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) occurs in smooth muscle as spontaneous SR Ca(2+) release or Ca(2+) sparks and, in some spiking tissues, as Ca(2+) release that is triggered by the activation of sarcolemmal Ca(2+) channels. Both processes display spatial localization in that release occurs at a higher frequency at specific subcellular regions. We have used two-photon flash photolysis (TPFP) of caged Ca(2+) (DMNP-EDTA) in Fluo-4-loaded urinary bladder smooth muscle cells to determine the extent to which spatially localized increases in Ca(2+) activate SR release and to further understand the molecular and biophysical processes underlying CICR. TPFP resulted in localized Ca(2+) release in the form of Ca(2+) sparks and Ca(2+) waves that were distinguishable from increases in Ca(2+) associated with Ca(2+) uncaging, unequivocally demonstrating that Ca(2+) release occurs subsequent to a localized rise in [Ca(2+)](i). TPFP-triggered Ca(2+) release was not constrained to a few discharge regions but could be activated at all areas of the cell, with release usually occurring at or within several microns of the site of photolysis. As expected, the process of CICR was dominated by ryanodine receptor (RYR) activity, as ryanodine abolished individual Ca(2+) sparks and evoked release with different threshold and kinetics in FKBP12.6-null cells. However, TPFP CICR was not completely inhibited by ryanodine; Ca(2+) release with distinct kinetic features occurred with a higher TPFP threshold in the presence of ryanodine. This high threshold release was blocked by xestospongin C, and the pharmacological sensitivity and kinetics were consistent with CICR release at high local [Ca(2+)](i) through inositol trisphosphate (InsP(3)) receptors (InsP(3)Rs). We conclude that CICR activated by localized Ca(2+) release bears essential similarities to those observed by the activation of I(Ca) (i.e., major dependence on the type 2 RYR), that the release is not spatially constrained to a few specific subcellular regions, and that Ca(2+) release through InsP(3)R can occur at high local [Ca(2+)](i).  相似文献   

6.
In smooth muscle cells, oscillations of intracellular Ca2+ concentration ([Ca2+]i) are controlled by inositol 1,4,5-trisphosphate (InsP3) and ryanodine (Ry) receptors on the sarcoplasmic reticulum (SR). Here we show that these Ca2+ oscillations are regulated differentially by InsP3 and Ry receptors in cells dispersed from the main trunk of the pulmonary artery (conduit myocytes) or from tertiary and quaternary arterial branches (resistance myocytes). Ry receptor antagonists inhibit either spontaneous or ATP-induced Ca2+ oscillations in resistance myocytes but they do not affect the oscillations in most conduit myocytes. In contrast, agents that inhibit InsP3 production or activation of InsP3 receptors do not alter the oscillations is resistance myocytes but block them in conduit myocytes. We have also examined the degree of overlap of Ry- and InsP3-sensitive stores in myocytes along the pulmonary arterial tree. In conduit myocytes, depletion of Ry-sensitive stores with repeated application of caffeine in the presence of Ry or in Ca2+ free solutions did not prevent the ATP-induced Ca2+ release from InsP3-dependent stores. However, responsiveness to ATP was completely abolished in resistance myocytes subjected to the same experimental protocol. Thus, InsP3- and Ry-dependent stores appear to be separated in conduit myocytes but joined in resistance myocytes. These data demonstrate for the first time differential properties of intracellular Ca2+ stores and receptors in myocytes distributed along the pulmonary arterial tree and help to explain the distinct functional responses of large and small pulmonary vessels to vasoactive agents.  相似文献   

7.
The sulfhydryl reagent thimerosal enhanced the sensitivity of hamster eggs to injected inositol 1,4,5-trisphosphate (InsP3) or Ca2+ to generate regenerative Ca2+ release from intracellular pools. A monoclonal antibody (mAb) to the InsP3 receptor blocked both the InsP3-induced Ca2+ release (IICR) and Ca(2+)-induced Ca2+ release (CICR). The mAb also blocked Ca2+ oscillations induced by thimerosal. The results indicate that thimerosal enhances IICR sensitized by cytosolic Ca2+, but not CICR from InsP3-insensitive pools, and causes repetitive Ca2+ releases from InsP3-sensitive pools.  相似文献   

8.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

9.
Cardiac alternans is a recognized risk factor for cardiac arrhythmia and sudden cardiac death. At the cellular level, Ca(2+) alternans appears as cytosolic Ca(2+) transients of alternating amplitude at regular beating frequency. Cardiac alternans is a multifactorial process but has been linked to disturbances in intracellular Ca(2+) regulation. In atrial myocytes, we tested the role of voltage-gated Ca(2+) current, sarcoplasmic reticulum (SR) Ca(2+) load, and restitution properties of SR Ca(2+) release for the occurrence of pacing-induced Ca(2+) alternans. Voltage-clamp experiments revealed that peak Ca(2+) current was not affected during alternans, and alternans of end-diastolic SR Ca(2+) load, evaluated by application of caffeine or measured directly with an intra-SR fluorescent Ca(2+) indicator (fluo-5N), were not a requirement for cytosolic Ca(2+) alternans. Restitution properties and kinetics of refractoriness of Ca(2+) release after activation during alternans were evaluated by four different approaches: measurements of 1) the delay (latency) of occurrence of spontaneous global Ca(2+) releases and 2) Ca(2+) spark frequency, both during rest after a large and small alternans Ca(2+) transient; 3) the magnitude of premature action potential-induced Ca(2+) transients after a large and small beat; and 4) the efficacy of a photolytically induced Ca(2+) signal (Ca(2+) uncaging from DM-nitrophen) to trigger additional Ca(2+) release during alternans. The results showed that the latency of global spontaneous Ca(2+) release was prolonged and Ca(2+) spark frequency was decreased after the large Ca(2+) transient during alternans. Furthermore, the restitution curve of the Ca(2+) transient elicited by premature action potentials or by photolysis-induced Ca(2+) release from the SR lagged behind after a large-amplitude transient during alternans compared with the small-amplitude transient. The data demonstrate that beat-to-beat alternation of the time-dependent restitution properties and refractory kinetics of the SR Ca(2+) release mechanism represents a key mechanism underlying cardiac alternans.  相似文献   

10.
In cardiac muscle the sarcoplasmic reticulum (SR) plays a key role in the control of contraction, releasing Ca(2+) in response to Ca(2+) influx across the sarcolemma via voltage-gated Ca(2+) channels. Here we report evidence for an additional distinct Ca(2+) store and for actions of nicotinic acid adenine dinucleotide phosphate (NAADP) to mobilize Ca(2+) from this store, leading in turn to enhanced Ca(2+) loading of the SR. Photoreleased NAADP increased Ca(2+) transients accompanying stimulated action potentials in ventricular myocytes. The effects were prevented by bafilomycin A (an H(+)-ATPase inhibitor acting on acidic Ca(2+) stores), by desensitizing concentrations of NAADP, and by ryanodine and thapsigargin to suppress SR function. Bafilomycin A also suppressed staining of acidic stores with Lysotracker Red without affecting SR integrity. Cytosolic application of NAADP by means of its membrane permeant acetoxymethyl ester increased myocyte contraction and the frequency and amplitude of Ca(2+) sparks, and these effects were inhibited by bafilomycin A. Effects of NAADP were associated with an increase in SR Ca(2+) load and appeared to be regulated by beta-adrenoreceptor stimulation. The observations are consistent with a novel role for NAADP in cardiac muscle mediated by Ca(2+) release from bafilomycin-sensitive acidic stores, which in turn enhances SR Ca(2+) release by increasing SR Ca(2+) load.  相似文献   

11.
Calreticulin (CRT) is a highly conserved Ca(2+)-binding protein that resides in the lumen of the endoplasmic reticulum (ER). We overexpressed CRT in Xenopus oocytes to determine how it could modulate inositol 1,4,5-trisphosphate (InsP(3))-induced Ca(2+) influx. Under conditions where it did not affect the spatially complex elevations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) due to InsP(3)-induced Ca(2+) release, overexpressed CRT decreased by 46% the Ca(2+)-gated Cl(-) current due to Ca(2+) influx. Deletion mutants revealed that CRT requires its high capacity Ca(2+)-binding domain to reduce the elevations of [Ca(2+)](i) due to Ca(2+) influx. This functional domain was also required for CRT to attenuate the InsP(3)-induced decline in the free Ca(2+) concentration within the ER lumen ([Ca(2+)](ER)), as monitored with a "chameleon" indicator. Our data suggest that by buffering [Ca(2+)](ER) near resting levels, CRT may prevent InsP(3) from depleting the intracellular stores sufficiently to activate Ca(2+) influx.  相似文献   

12.
Ca2+-dependent potentiation of muscarinic receptor-mediated Ca2+ elevation   总被引:1,自引:0,他引:1  
Muscarinic receptor-mediated increases in Ca(2+) in SH-SY5Y neuroblastoma cells consist of an initial fast and transient phase followed by a sustained phase. Activation of voltage-gated Ca(2+) channels prior to muscarinic stimulation resulted in a several-fold potentiation of the fast phase. Unlike the muscarinic response under control conditions, this potentiated elevation of intracellular Ca(2+) was to a large extent dependent on extracellular Ca(2+). In potentiated cells, muscarinic stimulation also activated a rapid Mn(2+) entry. By using known organic and inorganic blockers of cation channels, this influx pathway was easily separated from the known Ca(2+) influx pathways, the store-operated pathway and the voltage-gated Ca(2+) channels. In addition to the Ca(2+) influx, both IP(3) production and Ca(2+) release were also enhanced during the potentiated response. The results suggest that a small increase in intracellular Ca(2+) amplifies the muscarinic Ca(2+) response at several stages, most notably by unravelling an apparently novel receptor-activated influx pathway.  相似文献   

13.
Store-operated Ca(2+) entry was investigated by monitoring the Ca(2+)-dependent K(+) permeability in voltage-clamped guinea pig hepatocytes. In physiological conditions, intracellular Ca(2+) stores are discharged following agonist stimulation, but depletion of this stores can be achieved using Ca(2+)-Mg(2+)-ATPase inhibitors such as 2,5-di(tert-butyl)-1,4-benzohydroquinone and thapsigargin. The effect of internal Ca(2+) store depletion on Ca(2+) influx was tested in single cells using inositol 1,4,5-trisphosphate (InsP(3)) release from caged InsP(3) after treatment of the cells with 2, 5-di(tert-butyl)-1,4-benzohydroquinone or thapsigargin in Ca(2+)-free solutions. We show that the photolytic release of 1-d-myo-inositol 1,4-bisphosphate 5-phosphorothioate, a stable analog of InsP(3), and Ca(2+) store depletion have additive effects to activate a high level of Ca(2+) entry in single guinea pig hepatocytes. These results suggest that there is a direct functional interaction between InsP(3) receptors and Ca(2+) channels in the plasma membrane, although the nature of these Ca(2+) channels in hepatocytes is unclear.  相似文献   

14.
Calcium seems to be a major second messenger involved in the regulation of prostatic cell functions, but the mechanisms underlying its control are poorly understood. We investigated spatiotemporal aspects of Ca2+ signals in the LNCaP cell line, a model of androgen-dependent prostatic cells, by using non-invasive external electric field pulses that hyperpolarize the anode facing membrane and depolarize the membrane facing the cathode. Using high-speed fluo-3 confocal imaging, we found that an electric field pulse (10-15 V/cm, 1-5 mA, 5 ms) initiated rapidly, at the hyperpolarized end of the cell, a propagated [Ca2+]i wave which spread through the cell with a constant amplitude and an average velocity of about 20 microns/s. As evidenced by the total wave inhibition either by the block of Ca2+ entry or the depletion of Ca2+ stores by thapsigargin, a specific Ca(2+)-ATPase inhibitor, the [Ca2+]i wave initiation may imply a localized Ca2+ influx linked to a focal auto-regenerative process of Ca2+ release. Using different external Ca2+ and Ca2+ entry blockers concentrations, Mn2+ quenching of fluo-3 and fura-2 fluorescence and inhibitors of InsP3 production, we found evidence that the [Ca2+]i wave progression required, in the presence of basal levels of InsP3, an interplay between Ca2+ release from InsP3-sensitive Ca2+ stores and Ca2+ influx through channels possibly activated by the [Ca2+]i rise.  相似文献   

15.
We consider a simple, minimal model for signal-induced Ca2+ oscillations based on Ca(2+)-induced Ca2+ release. The model takes into account the existence of two pools of intracellular Ca2+, namely, one sensitive to inositol 1,4,5 trisphosphate (InsP3) whose synthesis is elicited by the stimulus, and one insensitive to InsP3. The discharge of the latter pool into the cytosol is activated by cytosolic Ca2+. Oscillations in cytosolic Ca2+ arise in this model either spontaneously or in an appropriate range of external stimulation; these oscillations do not require the concomitant, periodic variation of InsP3. The following properties of the model are reviewed and compared with experimental observations: (a) Control of the frequency of Ca2+ oscillations by the external stimulus or extracellular Ca2+; (b) correlation of latency with period of Ca2+ oscillations obtained at different levels of stimulation; (c) effect of a transient increase in InsP3; (d) phase shift and transient suppression of Ca2+ oscillations by Ca2+ pulses, and (e) propagation of Ca2+ waves. It is shown that on all these counts the model provides a simple, unified explanation for a number of experimental observations in a variety of cell types. The model based on Ca(2+)-induced Ca2+ release can be extended to incorporate variations in the level of InsP3 as well as desensitization of the InsP3 receptor; besides accounting for the phenomena described by the minimal model, the extended model might also account for the occurrence of complex Ca2+ oscillations.  相似文献   

16.
Inositol 1,4,5-trisphosphate (InsP3) releases Ca2+ from the non-mitochondrial Ca2+ store site of various types of cells. To study the mechanisms of the Ca2+ release from the store site, the effect of InsP3 on the passive Ca2+ release and influx, and the active Ca2+ uptake in the presence of oxalate, was examined using saponin-treated guinea pig peritoneal macrophages. InsP3 stimulated the passive Ca2+ release and influx. Although InsP3 slightly inhibited the active Ca2+ uptake in the presence of oxalate, it seems unlikely that the Ca2+ release by this agent is caused by the inhibition of the Ca2+ uptake, because the addition of apyrase or hexokinase (which removes ATP within 30 s, so that no more Ca2+ can be accumulated) or vanadate (which inhibits the Ca2+ uptake) resulted in very slow release of Ca2+. These results suggest that the Ca2+ permeability of the Ca2+ store membrane is increased by InsP3. InsP3 did not cause an increase in the Ca2+ permeability of phospholipid vesicles (liposomes), indicating that this agent may bring about Ca2+ release by a specific effect on the physiologically relevant Ca2+ channels or carriers in the non-mitochondrial Ca2+ store site. The passive Ca2+ release by InsP3 was enhanced by ATP and an unhydrolyzable ATP analogue, 5'-adenylyimidodiphosphate, but not by ADP or AMP. The passive Ca2+ release by InsP3 was observed even at 0 degree C.  相似文献   

17.
Sarcoplasmic reticulum (SR) Ca2+ release and plasma membrane Ca2+ influx are key to intracellular Ca2+ ([Ca2+]i) regulation in airway smooth muscle (ASM). SR Ca2+ depletion triggers influx via store-operated Ca2+ channels (SOCC) for SR replenishment. Several clinically relevant bronchodilators mediate their effect via cyclic nucleotides (cAMP, cGMP). We examined the effect of cyclic nucleotides on SOCC-mediated Ca2+ influx in enzymatically dissociated porcine ASM cells. SR Ca2+ was depleted by 1 microM cyclopiazonic acid in 0 extracellular Ca2+ ([Ca2+]o), nifedipine, and KCl (preventing Ca2+ influx through L-type and SOCC channels). SOCC was then activated by reintroduction of [Ca2+]o and characterized by several techniques. We examined cAMP effects on SOCC by activating SOCC in the presence of 1 microM isoproterenol or 100 microM dibutryl cAMP (cell-permeant cAMP analog), whereas we examined cGMP effects using 1 microM (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO nitric oxide donor) or 100 microM 8-bromoguanosine 3',5'-cyclic monophosphate (cell-permeant cGMP analog). The role of protein kinases A and G was examined by preexposure to 100 nM KT-5720 and 500 nM KT-5823, respectively. SOCC-mediated Ca2+ influx was dependent on the extent of SR Ca2+ depletion, sensitive to Ni2+ and La3+, but not inhibitors of voltage-gated influx channels. cAMP as well as cGMP potently inhibited Ca2+ influx, predominantly via their respective protein kinases. Additionally, cAMP cross-activation of protein kinase G contributed to SOCC inhibition. These data demonstrate that a Ni2+/La3+-sensitive Ca2+ influx in ASM triggered by SR Ca2+ depletion is inhibited by cAMP and cGMP via a protein kinase mechanism. Such inhibition may play a role in the bronchodilatory response of ASM to clinically relevant drugs (e.g., beta-agonists vs. nitric oxide).  相似文献   

18.
The influence of 1-D-myo-inositol 1,4,5-trisphosphate (InsP3) breakdown by InsP3 5-phosphatase in determining the time course of Ca2+ release from intracellular stores was investigated with flash photolytic release of a stable InsP3 derivative, 5-thio-InsP3, from a photolabile caged precursor. The potency and Ca(2+)-releasing properties of the biologically active D isomers of 5-thio-InsP3 and InsP3 itself were compared by photolytic release in guinea pig hepatocytes. After a light flash, cytosolic free calcium concentration ([Ca2+]i) showed an initial delay before rising quickly to a peak and declining more slowly to resting levels, with time course and amplitude generally similar to those seen with photolytic release of InsP3. Differences were a three- to eightfold lower potency of 5-thio-InsP3 in producing Ca2+ release, much longer delays between photolytic release and Ca2+ efflux with low concentrations of 5-thio-InsP3 than with InsP3, and persistent reactivation of Ca2+ release, producing periodic fluctuations of cytosolic [Ca2+]i with high concentrations of 5-thio-InsP3 but not InsP3 itself. The lower potency of 5-thio-InsP3 may be a result of a lower affinity for closed receptor/channels or a lower open probability of liganded receptor/channels. The longer delays with 5-thio-InsP3 at low concentration suggest that metabolism of InsP3 by 5-phosphatase may reduce the concentration sufficiently to prevent receptor activation and may have a similar effect on InsP3 concentration during hormonal activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
This study investigates the contribution of Ca2+ entry via sarcolemmal (SL) Ca2+ channels to the Ca2+ transient and its relationship with sarcoplasmic reticulum (SR) Ca2+ content during steady-state contraction in guinea pig and rat ventricular myocytes. The action potential clamp technique was used to obtain physiologically relevant changes in membrane potential. A method is shown that allows calculation of Ca2+ entry through the SL Ca2+ channels by measuring Cd(2+)-sensitive current during the whole cardiac cycle. SR Ca2+ content was calculated from caffeine-induced transient inward current. In guinea pig cardiac myocytes stimulated at 0.5 Hz and 0.2 Hz, Ca2+ entry through SL Ca2+ channels during a cardiac cycle was approximately 30% and approximately 50%, respectively, of the SR Ca2+ content. In rat myocytes Ca2+ entry via SL Ca2+ channels at 0.5 Hz was approximately 3.5% of the SR Ca2+ content. In the presence of 500 nM thapsigargin Ca2+ entry via SL Ca2+ channels in guinea pig cardiac cells was 39% greater than in controls, suggesting a larger contribution of this mechanism to the Ca2+ transient when the SR is depleted of Ca2+. These results provide quantitative support to the understanding of the relationship between Ca2+ entry and the SR Ca2+ content and may help to explain differences in the Ca2+ handling observed in different species.  相似文献   

20.
We studied the effects of increased Ca(2+) influx on alpha(1)-adrenoceptor-stimulated InsP formation in adult rat cardiac myocytes. We further examined if such effects could be mediated through a specific alpha(1)-adrenoceptor subtype. [(3)H]InsP responses to adrenaline were dependent on extracellular Ca(2+) concentration, from 0.1 microM to 2 mM, and were completely blocked by Ca(2+) removal. However, in cardiac myocytes preloaded with BAPTA, a highly selective calcium chelating agent, Ca(2+) concentrations higher than 1 microM had no effect on adrenaline-stimulated [(3)H]InsP formation. Taken together these results suggest that [(3)H]InsP formation induced by alpha(1)-adrenergic stimulation is in part mediated by increased Ca(2+) influx. Consistent with this, ionomycin, a calcium ionophore, stimulated [(3)H]InsP formation. This response was additive with the response to adrenaline stimulation implying that different signaling mechanisms may be involved. In cardiac myocytes treated with the alpha(1B)-adrenoceptor alkylating agent, CEC, [(3)H]InsP formation remained unaffected by increased Ca(2+) concentrations, a pattern similar to that observed when intracellular Ca(2+) was chelated with BAPTA. In contrast, addition of the alpha(1A)-subtype antagonist, 5'-methyl urapidil, did not affect the Ca(2+) dependence of [(3)H]InsP formation. Neither nifedipine, a voltage-dependent Ca(2+) channel blocker nor the inorganic Ca(2+) channel blockers, Ni(2+) and Co(2+), had any effect on adrenaline stimulated [(3)H]InsP, at concentrations that inhibit Ca(2+) channels. The results suggest that in adult rat cardiac myocytes, in addition to G protein-mediated response, alpha(1)-adrenergic-stimulated [(3)H]InsP formation is activated by increased Ca(2+) influx mediated by the alpha(1B)-subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号