首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although root litter contributes to a large extent to soil organic matter accumulation in peatlands, decomposition of root litter is often neglected in studies on litter decomposition and carbon and nutrient cycling in these ecosystems. In this study, decomposition of root and rhizome litter of Carex diandra and Carex lasiocarpa was determined in two temperate fens, one dominated by Sphagnum species ( Sphagnum fen; soil pH=4.4) and one without a Sphagnum cover ( Carex fen; soil pH=5.7). One-year mass loss increased in the order: roots Carex diandra 相似文献   

2.
Modeling Northern Peatland Decomposition and Peat Accumulation   总被引:9,自引:0,他引:9  
To test the hypothesis that long-term peat accumulation is related to contemporary carbon flux dynamics, we present the Peat Decomposition Model (PDM), a new model of long-term peat accumulation. Decomposition rates of the deeper peat are directly related to observable decomposition rates of fresh vegetation litter. Plant root effects (subsurface oxygenation and fresh litter inputs) are included. PDM considers two vegetation types, vascular and nonvascular, with different decomposition rates and aboveground and belowground litter input rates. We used PDM to investigate the sensitivities of peat accumulation in bogs and fens to productivity, root:shoot ratio, tissue decomposability, root and water table depths, and climate. Warmer and wetter conditions are more conducive to peat accumulation. Bogs are more sensitive than fens to climate conditions. Cooler and drier conditions lead to the lowest peat accumulation when productivity is more temperature sensitive than decomposition rates. We also compare peat age–depth profiles to field data. With a very general parameterization, PDM fen and bog age–depth profiles were similar to data from the the most recent 5000 years at three bog cores and a fen core in eastern Canada, but they overestimated accumulation at three other bog cores in that region. The model cannot reliably predict the amount of fen peat remaining from the first few millennia of a peatland's development. This discrepancy may relate to nonanalogue, early postglacial climatic and nutrient conditions for rich-fen peat accumulation and to the fate of this fen peat material, which is overlain by a bog as the peatland evolves, a common hydroseral succession in northern peatlands. Because PDM sensitivity tests point to these possible factors, we conclude that the static model represents a framework that shows a consistent relationship between contemporary productivity and fresh-tissue decomposition rates and observed long-term peat accumulation. Received 19 June 2000; accepted 24 January 2001.  相似文献   

3.
The relationships between vegetation components, surface water chemistry and peat chemistry from 23 fens in boreal Alberta, Canada, substantiate important differences along the poor to rich fen gradient. Each of the three fen types have their own characteristic species. The extreme-rich fens are characterized by Calliergon trifarium, Drepanocladus revolvens, Scirpus hudsonianus, S. cespitosus, Scorpidium scorpioides, and Tofieldia glutinosa. Moderate-rich fens are characterized by Brachythecium mildeanum, Carex diandra, Drepanocladus vernicosus, D. aduncus, and D. polycarpus. Poor fens are characterized by Carex pauciflora, Drepanocladus exannulatus, Sphagnum angustifolium, S. jensenii, and S. majus. Moderate-rich fens have fewer species in common with poor fens than with extreme-rich fens, while species richness is highest in the moderate-rich fens and lowest in poor fens. Variation in vascular plant occurrence appears to be more associated with nutrient levels, while bryophytes are more affected by changes in acidity and mineral elements. Based on chemical criteria, the three fen types are clearly separated by surface water pH, calcium, magnesium, and conductivity, but are less clearly differentiated by the nitrogen and phosphorus components of the surface waters. Moderate-rich fens are chemically variable both temporally and spatially, whereas poor fens and extreme-rich fens are more stable ecosystems. Whereas components of alkalinity-acidity are the most important factors that distinguish the three fen types in western Canada, nutrient concentrations in the surface waters generally do not differ appreciably in the three fen types.  相似文献   

4.
Increased decomposition rates in boreal peatlands with global warming might increase the release of atmospheric greenhouse gases, thereby producing a positive feedback to global warming. How temperature influences microbial decomposers is unclear. We measured in vitro rates of decomposition of senesced sedge leaves and rhizomes (Carex aquatilis), from a fen, and peat moss (Sphagnum fuscum), from a bog, at 14 and 20 degrees C by the three most frequently isolated fungi and bacteria from these materials. Decomposition rates of the bog litter decreased (5- to 17-fold) with elevated temperatures, and decomposition of the sedge litters was either enhanced (2- to 30-fold) or remained unaffected by elevated temperatures. The increased temperature regime always favoured fungal over bacterial decomposition rates (2- to 3-fold). Different physiological characteristics of these microbes suggest that fungi using polyphenolic polymers as a carbon source cause greater mass losses of these litters. Litter quality exerted a stronger influence on decomposition at elevated temperatures, as litter rich in nutrients decomposed more quickly than litter poorer in nutrients at higher temperatures (8.0%-25.7% for the sedge litters vs. 0.2% for the bryophyte litter). We conclude that not all peatlands may provide a positive feedback to global warming. Cautious extrapolation of our data to the ecosystem level suggests that decomposition rates in fens may increase and those in bogs may decrease under a global warming scenario.  相似文献   

5.
In southern Sweden there are regional gradients in the rate of atmospheric deposition of nitrogen, and the rate of N deposition has increased in recent decades This may have caused a shift in the growth-limiting nutrient of Sphagnum growth from nitrogen to phosphorus In this study, the influence of N and P concentrations on the decay of litter peat formed by Sphagnum magellanicum was examined A total of 90 litter peat samples formed by this species was collected from 15 raised bogs (3 sites per bog, 2 microsites per site) Total N and P of samples were determined and the rate of decomposition (C02 release) was measured under aerated, laboratory conditions at 18°C Differences in decomposition rates, N and P concentrations were most pronounced among microsites within sites, whereas no significant differences were observed among bogs The results indicate that decomposition of 5 magellanicum litter peat is influenced more by P than by N Thus, it appears that the recent increase in atmospheric N deposition has not had a large direct effect on peat decomposition rates It is suggested that the efficient uptake of N and P by the Sphagnum plant may lead to a positive feedback mechanism, whereby more slowly growing Sphagnum produces more nutrient-enriched litter peat with a more rapid decay Such a mechanism could promote the development of microtopography (hummocks and hollows) on bogs  相似文献   

6.
We evaluated differences in the rates and correlates of decomposition among 32 fern and angiosperm litter types collected in Hawai'i. Leptosporangiate ferns were separated into groups based on phylogeny: 'polypod' ferns, a monophyletic clade of ferns that diversified in the Cretaceous, and all other ('non-polypod') ferns that diversified earlier. We measured initial litter chemistry (nutrients and carbon chemistry), and mass loss and nitrogen (N), phosphorus (P), and calcium (Ca) of litter tissue during a 1-yr incubation in a common garden. Nutrient concentrations and carbon (C) chemistry differed significantly among litter types, and litter turnover ( k -values) ranged from 0.29 to 8.31. Decomposition rates were more closely correlated with nutrient concentration than is typically observed. Lignin:N was the best predictor of decomposition across all litter types combined; however, among plant groups different predictors of decomposition were important. Nitrogen and P concentrations best predicted fern decomposition, whereas C chemistry, particularly lignin concentration, was more important for angiosperm (monocot and dicot) decomposition. Among native plants, non-polypod ferns decomposed significantly more slowly than both polypod ferns and angiosperms. Contrary to our hypothesis, fern litter did not decompose more slowly than angiosperm litter overall. Nutrient dynamics in litter were affected by initial litter concentration more than phylogeny; low-nutrient litter immobilized more nutrients than high-nutrient litter. Systematic differences in rates of decomposition, and the importance of nutrients in predicting fern decomposition, imply that changes in species composition within ferns and between ferns and angiosperms could influence the functioning of ecosystems where ferns are important forest components.  相似文献   

7.
Riparian ecosystems can harbor great diversity and provide important ecological functions such as improving water quality. The impact of eutrophication on riparian ecosystems, however, is unclear. We conducted a mesocosm experiment to study the effects of nutrient loading on riparian ecosystems. We specifically asked whether the source of nutrients in the riparian zone affects the complex interactions that occur between surface water and adjacent wetlands. We also studied litter decomposition in the wetland component of the mesocosms, because litter accumulation in fens is assumed to control succession toward floating mats. Each mesocosm consisted of an upland component, referred to as the bank, and a water compartment. The bank and water compartments were planted with typical riparian zone and open water fen species prior to the addition of nitrogen (N) and phosphorus (P) in different combinations to either the bank or the surface water. Nutrient addition (mainly P) resulted in increased plant production and higher expansion rates of plants on the bank and in the water. There were also clear interactions in plant responses between the bank and water. Only eutrophic species increased shoot densities after fertilization. Nutrient addition further resulted in higher litter production, especially on the banks, and stimulated decomposition. Both the plant responses and the litter experiment indicated that eutrophication would accelerate succession to floating mats. Such floating fen mats are not likely to have the typical species-rich combination of desirable species; however, as our results suggest that they would be dominated by a few eutrophic species.  相似文献   

8.
Abstract. Nitrogen, phosphorus and potassium were supplied to some Belgian fens of varying nutrient status and productivity. Plant growth in the lowest productive fen with a species-rich Caricion davallianae vegetation was strongly P-limited. N was ineffective when applied alone, but increased the effect of P-addition when applied together. Summer biomass and plant nutrient concentrations were monitored for four years, and showed partial recovery of nutrient limitation. In a more productive fen dominated by Carex lasiocarpa and in a fen meadow, nutrient limitation was less strong. N limited growth in the productive fen, and N and K were co-limiting in the fen meadow. The P-concentration in the productive fen vegetation showed a marked increase after P-fertilization, but it did not result in higher standing crop. The significance of P-limitation for the conservation of species rich low productive fens is discussed. P-limitation may be an essential feature in the conservation of low productive rich fens: because it is less mobile in the landscape than N and/or because it is an intrinsic property of this vegetation type. Plant nutrient concentrations and N:P-ratios may be used as an indication for the presence and type of nutrient limitation in the vegetation. We found N:P-ratios of 23 to 31 for a P-limited site and 8 to 15 in N-limited sites. This was in agreement with critical values from the literature: N:P > ca. 20 for P-limitation and N:P < 14 for N-limitation. Thus, this technique appears valid in the vegetation types that were studied here.  相似文献   

9.
10.
Abstract. The above-ground standing crop and nutrient concentrations in plant material were examined in 45 stands of mire vegetation in the Biebrza peatland, Poland. The stands included flood-plains, rich fens, transitional fens and bogs. The pattern in nutrient concentrations in the above-ground plant material resembled the pattern in nutrient concentrations in peatwater and peat which had been investigated in an earlier study. Concentrations of N were quite uniform along the gradient. P-concentrations were highest in the transitional fen. Critical nutrient concentrations were defined on the basis of a review of nutrient concentrations in plant material from peatlands in which a fertilization experiment had been carried out. Defined critical values for phanerogams were: 13-14 and 0.7 mg/g dry wt for N and P respectively. Concentrations lower than these values indicate deficiency. P/N ratios ≥ 0.07 indicate N-deficiency and P/N ratios ≤ 0.04 — 0.05 indicate P-deficiency. According to these values the Biebrza fens and bogs appear to be primarily deficient in N. The growth of the flood-plain vegetation does not appear to be restricted by nutrients.  相似文献   

11.
Despite their low primary production, ombrotrophic peatlands have a considerable potential to store atmospheric carbon as a result of their extremely low litter decomposition rates. Projected changes in temperature and nitrogen (N) deposition may increase decomposition rates by their positive effects on microbial activity and litter quality, which can be expected to result in enhanced mass loss and N release from Sphagnum and vascular plant litter. This is the first study that examines the combined effects of increased temperature and N deposition on decomposition in bogs. We investigated mass loss and N release at four bog sites along a gradient from north Sweden to northeast Germany in which both temperature and N deposition increased from north to south. We performed two litterbag experiments: one reciprocal experiment with Eriophorum vaginatum litter and one experiment using recalcitrant (Sphagnum fuscum) and more degradable (Sphagnum balticum) Sphagnum litter collected from the most northern site. We measured mass loss and N release during two (Sphagnum) and three (E. vaginatum) years. The N concentration and decomposability of the E. vaginatum litter did not differ between the sites. Mass loss from E. vaginatum litter increased over the gradient from north to south, but there was no such effect on Sphagnum litter. N loss of all litter types was affected by collection site, incubation site and time and all interactions between these factors. N release in Sphagnum was positively related to N concentration. We conclude that decomposition of vascular plants and Sphagnum litter is influenced by different environmental drivers, with enhanced temperatures stimulating mass loss of vascular plant litter, but not of Sphagnum. Enhanced N deposition increases Sphagnum litter N loss. As long‐term consequences of climate change will presumably entail a higher vascular plant production, overall litter decomposition rates are likely to increase, especially in combination with increased temperature.  相似文献   

12.
植物枯落物分解对生态系统碳通量和养分循环有至关重要的作用,这一过程主要由3个相互作用的因素决定,即化学(枯落物理化特性)、物理(气候和环境)以及生物(参与枯落物分解的微生物和无脊椎动物)因素。在气候和立地环境条件相同的情况下,枯落物质量是制约分解的内在因素。在鄱阳湖湿地开展了野外定位观测实验,采用分解袋技术研究了鄱阳湖湿地优势植物芦苇(Phragmite)、南荻(Triarrhena lutarioriparia)和薹草(Carex.cinerascens Kükenth)枯落物分解速率及碳(C)、氮(N)、磷(P)元素释放动态特的征差异性。结果表明,在0-150 d内三种植物枯落物的干物质分解速率和残留率以及碳相对归还指数(CRRI)、氮相对归还指数(NRRI)、磷相对归还指数(PRRI)差异性都极其显著。在0-150 d内分解速率都是芦苇的最大,薹草的次之,南荻最小。分解进行150 d后,芦苇、南荻和薹草枯落物干物质残留率依次约为56.57%、67.99%和60.88%,CRRI依次约为57.44%、34.58%和41.75%,NRRI依次约为50.71%、-22.66%、和23.18%,PRRI依次约为88.91%、79.27%和85.63%。用Olson负指数衰减模型拟合方程预测芦苇、南荻、薹草枯落物分解完成50%所需的时间大约依次为184 d、249 d和210 d,分解完成95%所需的时间依次为795 d、1078 d和908 d。芦苇和薹草枯落物碳、氮和磷在分解过程中都表现出净释放模式,而南荻枯落物的碳和磷也一直表现为净释放模式,但是氮一直表现为净积累模式。芦苇分解过程中的营养释放作用最强,而南荻群落对氮的吸收和富集效应最强。研究表明植物种类及基质物质量对枯落物分解及其养分释放有很强的调控作用。今后的研究应考虑不同物种枯落物混合时的分解过程以及分解过程中的微生物因素,以便能揭示植物群落物种多样性及微生物活动在湿地生物地球化学循环中的调控作用机制,以期为鄱阳湖湿地碳、氮和磷的生物地球化学循环提供更新的认识,为鄱阳湖湿地的科学管理、保护与恢复提供科学依据。  相似文献   

13.
1. We studied the patterns of litter decomposition in lake littoral habitats and investigated whether decay rates, as an integrating proxy for environmental conditions in the sediment, would co‐vary with net carbon dioxide (CO2) exchange and methane (CH4) efflux. These gas fluxes are known to be sensitive to environmental conditions. Losses in the mass of cellulose, root, rhizome and moss litter were measured during 2 years in boreal littoral wetlands in Finland and compared with published data on concurrently measured gas fluxes. Four study sites covered a range of sediment types and hydrological conditions. 2. Decomposition was not linearly related to the duration of flooding but depended on sediment type. Readily decomposable litter fractions, such as cellulose and rhizome litter, lost mass at a faster rate in marshes with a longer period of flooding but wide water level fluctuations that hinder establishment of a Sphagnum cover, than in peat‐forming fens. In marshes, the mean first‐year mass losses were 83–99% and 19–62% for cellulose and rhizomes, respectively. In fens, the respective losses were 40–53% and 33%. In the first year, the loss in the mass of the more recalcitrant root litter did not differ between sites (mean 19–30%) and moss litter lost no mass. 3. The estimated first‐year carbon loss from belowground litter was about 0.1–0.3 times ecosystem respiration and roughly similar to net carbon gas (CO2, CH4) efflux, suggesting that vascular plants and recent plant residues contribute substantially to ecosystem release of carbon gases. On the other hand, at least 40% of the mass of the belowground litter remained on a littoral site after the first 2 years of decomposition. Slow decomposition may indicate the accumulation of organic‐rich sediments. The accumulated carbon could explain the excess CO2 release found in most littoral sites. In continuously inundated sites decomposition rates were similar to those in periodically flooded sites, but ecosystem‐atmosphere CO2 exchange fell to close to zero. This discrepancy implies that the released CO2 is dissolved in water and may be exported into the pelagic zone of the lake.  相似文献   

14.
The litterbag technique was used to study the decomposition and nutrient dynamics of marsh litter in the four communities, Carex pseudocuraica (C.pa), C. lasiocarpa (C.la), Deyeuxia angustifolia (D.aa), and D. angustifolia-Shrub (D.aa-Srb), in Sanjiang Plain, Northeast China. Decomposition was divided into two periods in the first year, with the mass loss ranging from 11.7% to 31.4% of the initial mass during summer and autumn, accounting for more than 75% of the annual loss. The decomposition rates ranged from 0.000 612 to 0.000 945 d?1 depending on the depth of the flooding and its duration, and differed significantly in each community. The litter decomposed faster in communities with deeper and perennial flooding than in those with shallow and seasonal flooding. The initial ratios of C:N and C:P were also different among the four litter types, but these differences had no impact on the decomposition rates, suggesting that the main factor influencing the decomposition rates of marsh litter was the flooding status rather than the litter quality. The N concentrations in C.pa and C.la almost continuously increased over time, with their final values being 2.8 and 2.4 times higher than the initial ones, respectively. However, the nutrient dynamics in D.aa and D.aa-Srb offered another pattern, sharply falling in the first month and then gradually rising, with the values at the end of the experiment being close to those at the beginning. The litter accumulated substantial amounts of N in C.pa and C.la, while net N release from the litter was observed in both D.aa and D.aa-Srb. The difference may be caused by microorganisms' demand for nutrition, and then limited by the C:N ratios of litter and the availability of nitrogen from the soil and marsh water. In contrast with N dynamics, P concentrations of all the litter types apparently decreased during the first month, and then continued to decline in C.pa, remained constant in C.la and D.aa and increased slightly in D.aa-Srb. At the end of the experiment, the P concentrations decreased, respectively, by 56%, ?5%, 47% and 24% of the initial values of C.la, C. pa, D.aa and D.aa-Srb. The net P release was observed in all marsh litter over 480 days of decomposition and the intensity of the P release was different amongst communities, which may be regulated by ratios of initial C:P. The results suggested that in the marsh with the N limitation, litter tended to accumulate N and release P during decomposition and the intensity of accumulation or release was closely related to the initial C:N and C:P ratios.  相似文献   

15.
Question: Why is bryophyte succession in eutrophicated fens faster than in natural fens? Location: Mineral‐rich fens in The Netherlands and NW Europe. Methods: Literature review on the ecology of four bryophyte species in various successional types as observed in Dutch fens. Results: Bryophyte succession in eutrophicated fens from the brown moss Calliergonella cuspidata to Sphagnum squarrosum is much faster than in natural fens with species shifts from Scorpidium scorpioides to Sphagnum subnitens. Under P‐poor conditions, the brown moss stage is stabilized as long as mineral‐rich water is supplied. This is because S. scorpioides is tolerant of rainwater, is a strong competitor and can counteract acidification to some extent while S. subnitens is intolerant to groundwater and has low growth rates and low acidification capacity. In contrast, the Sphagnum stage is stable after rapid succession from rich‐fen mosses under P‐rich conditions. Calliergonella cuspidata has suboptimal growth in rainwater, possibly due to ammonium toxicity, while the high growth rates of S. squarrosum in nutrient‐rich and highly acidic groundwater allow early establishment and rapid expansion. Conclusions: If measures to improve fen base status occur in environments of increased nutrient (P) availability, the management may not lead to the desired restoration of brown moss stages, but instead to rapid acidification by S. squarrosum.  相似文献   

16.
We examined the relative importance of exogenous (pH, water table, soil nutrient and cation availability) and endogenous (carbon quality, nutrient and cation concentrations of litter) controls on litter decay over both the short term (1 yr) and intermediate term (3 yr) in four freshwater peatland communities that occur along a P and N availability gradient in the Coastal Plain of North Carolina. Four litter types were reciprocally transplanted into each community. Additionally, the effects of exogenous nutrient availability and low pH on decomposition dynamics were examined by fertilizing and liming plots in the most nutrient-deficient community, the short pocosin. Both exogenous and endogenous factors were important in controlling decay rates and nutrient mineralization-immobilization dynamics. The most important site factor controlling decay rates was water table, with greater rates of decomposition in drained sites. High initial soluble phenolic concentrations and a low holocellulose quotient (% holocellulose / % lignocellulose) in litter inhibited decay rates. Despite the extremely low nutrient availability in the pocosins and low soil pH in all three communities, both the cross-community comparison and the amendment experiment in the short pocosin demonstrated that exogenous nutrient availability, endogenous nutrient concentrations in litter, and low soil pH do not inhibit decomposition in these sites. In contrast, immobilization-mineralization dynamics of N and P were largely driven by a source-sink relationship, with greatest immobilization found with high exogenous nutrient availability and low initial endogenous nutrient concentrations. We suggest a conceptual model of nutrient control over decomposition as a function of carbon quality of litter.  相似文献   

17.
Nakamura T  Nakamura M 《Oecologia》2012,168(4):913-921
Although the productivity and nitrogen (N)-use traits of mire plants differ dramatically between fens and bogs, soil N richness does not necessarily differ, whereas the soil–water pH is distinctly lower in bogs than in fens. The ecophysiological mechanisms underlying these relations are unclear. To assess the relative availability of N forms in relation to soil–water pH, we focused on the net N uptake rate per unit root weight (NNUR), glutamine synthetase activity and nitrate reductase activity, and performed reciprocal transplant experiments with the seedlings of fen (Carex lyngbyei) and bog (C. middendorffii) sedge species in intact habitat sites. The soil–water pH was clearly lower at the bog site, but the NH4 +, NO3 or dissolved organic-N concentrations did not differ between the fen and bog sites. The activity of both enzymes for inorganic-N assimilation did not differ among the sites and species. However, the fen species grown at bog sites showed a drastic decrease in the NNUR, suggesting a suppression of organic-N uptake. The bog species showed no NNUR difference between the sites. These results indicate that inorganic-N availability does not differ between the two habitats, but organic-N availability is lowered in a low-pH bog, particularly in the case of fen species. Therefore, the relative availability of N forms shows species-specific variations that depend on the differences in the soil–water pH of root zone, even at similar N richness, which would play a key role in plant distribution strategies in relation to the fen-bog gradient.  相似文献   

18.
The biggest incentive to attempt the restoration and protection of estuaries is their widely acknowledged ecological and economic importance. Assessing estuary health and recovery can most accurately come from examining ecosystem processes. The purpose of this study was to explore the potential of mass loss and nitrogen (N) dynamics during leaf litter decomposition, to detect signs of functional recovery in two estuarine systems in south Texas. Submerged litterbags with black mangrove (Avicennia germinans) leaves were retrieved at various dates over 320 days. Decomposition was about 50% slower in one of the recovering systems compared to a reference site. Nitrogen immobilization and release from decaying leaf litter also discriminated among sites. Nitrogen immobilization potentials ranged from 4.15 to 6.89 mgN/g leaf litter, with the reference site exhibiting the highest value and thus the highest potential to conserve N during litter decomposition. The reference site also had a N immobilization time twice as long as the recovering sites, and a slower net release after the immobilization, appearing again as the most conservative in this part of the N cycling, possibly pointing to a less disturbed, or more stable ecosystem. Overall, the N dynamics during decomposition of mangrove leaf litter were similar in both recovering sites, whereas the reference site had a more conservative nutrient dynamics with more N being retained for longer in decomposing litter, coupled with a slower net release. Metrics derived from N dynamics may provide a finer resolution assessment of functional recovery, than only decomposition metrics.  相似文献   

19.
三江平原典型湿地枯落物早期分解过程及影响因素   总被引:13,自引:0,他引:13  
武海涛  吕宪国  杨青  姜明  佟守正 《生态学报》2007,27(10):4027-4035
枯落物分解是湿地物质循环和能量流动的关键环节,是维持湿地功能的重要过程之一。采用分解袋法对三江平原3种典型湿地植物枯落物分解过程及影响因素进行了研究。研究表明,在164d实验过程中乌拉苔草分解速率始终最快;在分解前103d中毛果苔草分解速率大于小叶章,但在103~164d间小叶章分解速率大于毛果苔草;分解164d,小叶章、乌拉苔草和毛果苔草枯落物的失重率分别为初始重的31.98%、32.99%和28.91%。分解过程中小叶章和毛果苔草枯落物中有机碳浓度波动较大,而乌拉苔草枯落物中持续下降;3种枯落物有机碳绝对含量都表现为净释放。小叶章枯落物中N浓度波动较大,绝对含量发生净释放;毛果苔草枯落物N浓度持续增加,绝对含量净增加;乌拉苔草枯落物N浓度先增加后减少,绝对含量发生净释放。3种枯落物中P浓度都先迅速下降后缓慢上升,绝对含量都表现为净释放。3种枯落物中C/N和C/P也相应的发生变化。小叶章和乌拉苔草枯落物分解速率与枯落物C/P显著相关,而毛果苔草枯落物与枯落物N浓度显著相关;对应3种枯落物分解速率的主要环境因子分别为土壤含水量、土壤容重和土壤温度。3种枯落物分解速率和营养物质含量动态受到枯落物自身质量和温湿条件、周围环境营养状况等自然环境条件的共同影响,相比而言,受枯落物质量的影响更大。  相似文献   

20.
Northern mires (fens and bogs) have significant climate feedbacks and contribute to biodiversity, providing habitats to specialized biota. Many studies have found drying and degradation of bogs in response to climate change, while northern fens have received less attention. Rich fens are particularly important to biodiversity, but subject to global climate change, fen ecosystems may change via direct response of vegetation or indirectly by hydrological changes. With repeated sampling over the past 20 years, we aim to reveal trends in hydrology and vegetation in a pristine boreal fen with gradient from rich to poor fen and bog vegetation. We resampled 203 semi‐permanent plots and compared water‐table depth (WTD), pH, concentrations of mineral elements, and dissolved organic carbon (DOC), plant species occurrences, community structure, and vegetation types between 1998 and 2018. In the study area, the annual mean temperature rose by 1.0°C and precipitation by 46 mm, in 20‐year periods prior to sampling occasions. We found that wet fen vegetation decreased, while bog and poor fen vegetation increased significantly. This reflected a trend of increasing abundance of common, generalist hummock species at the expense of fen specialist species. Changes were the most pronounced in high pH plots, where Sphagnum mosses had significantly increased in plot frequency, cover, and species richness. Changes of water chemistry were mainly insignificant in concentration levels and spatial patterns. Although indications toward drier conditions were found in vegetation, WTD had not consistently increased, instead, our results revealed complex dynamics of WTD as depending on vegetation changes. Overall, we found significant trend in vegetation, conforming to common succession pattern from rich to poor fen and bog vegetation. Our results suggest that responses intrinsic to vegetation, such as increased productivity or altered species interactions, may be more significant than indirect effects via local hydrology to the ecosystem response to climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号