首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X Fang  Y Fang  L Liu  G Liu  J Wu 《PloS one》2012,7(7):e42263
Binding of platelet receptor glycoprotein Ibα (GPIbα) to the A1 domain of von Willebrand factor (vWF) is a critical step in both physiologic hemostasis and pathologic thrombosis, for initiating platelet adhesion to subendothelium of blood vessels at sites of vascular injury. Gain-of-function mutations in GPIbα contribute to an abnormally high-affinity binding of platelets to vWF and can lead to thrombosis, an accurate complication causing heart attack and stroke. Of various antithrombotic monoclonal antibodies (mAbs) targeting human GPIbα, 6B4 is a potent one to inhibit the interaction between GPIbα and vWF-A1 under static and flow conditions. Mapping paratope to epitope with mutagenesis experiments, a traditional route in researches of these antithrombotic mAbs, is usually expensive and time-consuming. Here, we suggested a novel computational procedure, which combines with homology modeling, rigid body docking, free and steered molecular dynamics (MD) simulations, to identify key paratope residues on 6B4 and their partners on GPIbα, with hypothesis that the stable hydrogen bonds and salt bridges are the important linkers between paratope and epitope residues. Based on a best constructed model of 6B4 bound with GPIbα, the survival ratios and rupture times of all detected hydrogen bonds and salt bridges in binding site were examined via free and steered MD simulations and regarded as indices of thermal and mechanical stabilizations of the bonds, respectively. Five principal paratope residues with their partners were predicted with their high survival ratios and/or long rupture times of involved hydrogen bonds, or with their hydrogen bond stabilization indices ranked in top 5. Exciting, the present results were in good agreement with previous mutagenesis experiment data, meaning a wide application prospect of our novel computational procedure on researches of molecular of basis of ligand-receptor interactions, various antithrombotic mAbs and other antibodies as well as theoretically design of biomolecular drugs.  相似文献   

2.
The antithrombotic monoclonal antibody 82D6A3 is directed against amino acids Arg-963, Pro-981, Asp-1009, Arg-1016, Ser-1020, Met-1022, and His-1023 of the von Willebrand factor A3-domain (Vanhoorelbeke, K., Depraetere, H., Romijn, R. A., Huizinga, E., De Maeyer, M., and Deckmyn, H. (2003) J. Biol. Chem. 278, 37815-37821). By this, it potently inhibits the interaction of von Willebrand factor to collagens, which is a prerequisite for blood platelet adhesion to the injured vessel wall at sites of high shear. To fully understand the mode of action of 82D6A3 at the molecular level, we resolved its crystal structure in complex with the A3-domain and fine mapped its paratope by construction and characterization of 13 mutants. The paratope predominantly consists of two short sequences in the heavy chain CDR1 (Asn-31 and Tyr-32) and CDR3 (Asp-99, Pro-101, Tyr-102 and Tyr-103), forming one patch on the surface of the antibody. Trp-50 of the heavy and His-49 of the light chain, both situated adjacent to the patch, play ancillary roles in antigen binding. The crystal structure furthermore confirms the epitope location, which largely overlaps with the collagen binding site deduced from mutagenesis of the A3-domain (Romijn, R. A., Westein, E., Bouma, B., Schiphorst, M. E., Sixma, J. J., Lenting, P. J., and Huizinga, E. G. (2003) J. Biol. Chem. 278, 15035-15039). We herewith further consolidate the location of the collagen binding site and reveal that the potent action of the antibody is due to direct competition for the same interaction site. This information allows the design of a paratope-mimicking peptide with antithrombotic properties.  相似文献   

3.
Factor XI (FXI) binds specifically and reversibly to high affinity sites on the surface of stimulated platelets (Kd app of approximately 10 nm; Bmax of approximately 1,500 sites/platelet) utilizing residues exposed on the Apple 3 domain in the presence of high molecular weight kininogen and Zn2+ or prothrombin and Ca2+. Because the FXI receptor in the platelet membrane is contained within the glycoprotein Ibalpha subunit of the glycoprotein Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), we utilized mocarhagin, a cobra venom metalloproteinase, to generate a fragment (His1-Glu282) of glycoprotein Ibalpha that contains the leucine-rich repeats of the NH2-terminal globular domain and excludes the macroglycopeptide portion of glycocalicin, the soluble extracytoplasmic portion of glycoprotein Ibalpha. This fragment was able to compete with FXI for binding to activated platelets (Ki of 3.125 +/- 0.25 nm) with a potency similar to that of intact glycocalicin (Ki of 3.72 +/- 0.30 nm). However, a synthetic glycoprotein Ibalpha peptide, Asp269-Asp287, containing a thrombin binding site had no effect on the binding of FXI to activated platelets. Moreover, the binding of 125I-labeled thrombin to glycocalicin was unaffected by the presence of FXI at concentrations up to 10(-5) m. The von Willebrand factor A1 domain, which binds the leucine-rich repeats, inhibited the binding of FXI to activated platelets. Thus, we examined the effect of synthetic peptides of each of the seven leucine-rich repeats on the binding of 125I-FXI to activated platelets. All leucine-rich repeat (LRR) peptides derived from glycoprotein Ibalpha were able to inhibit FXI binding to activated platelets in the following order of decreasing potency: LRR7, LRR1, LRR4, LRR5, LRR6, LRR3, and LRR2. However, the leucine-rich repeat synthetic peptides derived from glycoprotein Ibbeta and Toll protein had no effect. We conclude that FXI binds to glycoprotein Ibalpha at sites comprising the leucine-rich repeat sequences within the NH2-terminal globular domain that are separate and distinct from the thrombin-binding site.  相似文献   

4.
A human monoclonal antibody (IgG2, lambda), 1B8.env, was produced, reactive with the envelope glycoprotein of human immunodeficiency virus (HIV). The antibody specifically stains cells infected with HIV, as assessed by indirect immunofluorescence analysis and reacts with determinants displayed on the surface of infected cells. In Western blot analysis, the antibody reacts with bands of 160 and 41 kD, consistent with the precursor and transmembrane forms of the HIV envelope glycoprotein. The antibody also reacts specifically in immunofluorescence and Western blot analysis with cells infected with the recombinant vaccinia virus VSC-25, which contains the envelope gene of HIV. With the lambda gt11 expression vector, the epitope recognized by 1B8.env was mapped to a region of 11 amino acids in the coding region of gp41. This domain is highly conserved between several otherwise highly variable HIV isolates. In addition, this epitope appears to be recognized by the vast majority of HIV seropositive individuals. Although antibody IB8.env does not neutralize HIV virion infectivity or virally mediated cell fusion, the results presented here demonstrate the feasibility of generating and characterizing human monoclonal antibodies to HIV with these techniques. Additional antibodies produced in this manner will help to further characterize the humoral response to HIV infection, define biologically significant determinants on HIV proteins, and may be useful in clinical applications.  相似文献   

5.
The alpha chain of the platelet von Willebrand factor receptor, glycoprotein (GP) Ib, is not known to be phosphorylated. Here, we report that the cytoplasmic domain of GPIbalpha is phosphorylated at Ser(609); this was detected by immunoblotting with an anti-phosphopeptide antibody, anti-pS609, that specifically recognizes the GPIbalpha C-terminal sequence S(606)GHSL(610) only when Ser(609) is phosphorylated. Immunoabsorption with anti-pS609 removed almost all of the GPIbalpha from platelet lysates, indicating a high proportion of GPIbalpha phosphorylation. Anti-pS609 inhibited GPIb-IX binding to the intracellular signaling molecule, 14-3-3zeta. Dephosphorylation of GPIb-IX with potato acid phosphatase inhibited anti-pS609 binding and also 14-3-3zeta binding. A synthetic phosphopeptide corresponding to the GPIbalpha C-terminal sequence (SIRYSGHpSL), but not a nonphosphorylated identical peptide, abolished GPIb-IX binding to 14-3-3zeta. Thus, phosphorylation at Ser(609) of GPIbalpha is important for 14-3-3zeta binding to GPIb-IX. In certain regions of spreading platelets, particularly at the periphery, there was a reduction in GPIbalpha staining by anti-pS609 as observed under a confocal microscope, indicating that a subpopulation of GPIbalpha molecules in these regions is dephosphorylated. These data suggest that phosphorylation and dephosphorylation at Ser(609) of GPIbalpha regulates GPIb-IX interaction with 14-3-3 and may play important roles in the process of platelet adhesion and spreading.  相似文献   

6.
VP2 is a structural protein of the foot-and-mouth disease virus (FMDV). In this study, a FMDV serotype-in-dependent monoclonal antibody (MAb), 4B2, was generated. By screening a phage-displayed random 12-peptide library, we found positive phages displaying the consensus motif ETTXLE (X is any amino acid (aa)), which is highly homologous to 6ETTLLE11 at the N-terminus of the VP2 protein. Subsequently, a series of GST-fusion proteins expressing a truncated N-terminus of VP2 were examined by western blot analysis using the MAb 4B2. The results indicated that the motif 6ETTLLE11 of VP2 may be the minimal requirement of the epitope recognized by 4B2. Moreover, a 12-aa peptide 2KKTEETTLLEDR13 was shown to be the minimal unit of the epitope with maximal binding activity to 4B2. Alanine-scanning analysis demonstrated thatThr7, Thr8, and Leu10 are the functional residues of the 4B2 epitope Glu6 and Leu9 are required residues, and Glu11 plays a crucial role in the binding of MAb 4B2. The fine mapping of the epitope indicated that MAb 4B2 has the potential to be used in FMDV diagnosis.  相似文献   

7.
Monoclonal antibodies (MAbs) 2D4, 2D6, and 13D6 against human herpesvirus 6 (HHV-6) variant A strain GS recognized virion envelope glycoprotein complex gp82-gp105 and neutralized the infectivity of HHV-6 variant A group isolates. A 624-bp genomic fragment (82G) was identified from an HHV-6 strain GS genomic library constructed in the lambda gt11 expression system by immunoscreening with MAb 2D6. Rabbit antibodies against the fusion protein expressed from the genomic insert recognized glycoprotein complex gp82-gp105 from HHV-6-infected cells, thus confirming that the genomic fragment is a portion of the gene(s) that encodes gp82-gp105. This genomic insert hybridized specifically with viral DNAs from HHV-6 variant A strains GS and U1101 under high-stringency conditions but hybridized with HHV-6 variant B strain Z-29 DNA only under low-stringency conditions. DNA sequence analysis of the insert revealed a 167-amino-acid single open reading frame with an open 5' end and a stop codon at the 3' end. Hybridization studies with HHV-6A strain U1102 DNA localized the gp82-gp105-encoding gene to the unique long region near the direct repeat at the right end of the genome. To locate the neutralizing epitope(s) recognized by the MAbs, a series of deletions from the 3' end of the gene were constructed with exonuclease III, and fusion proteins from deletion constructs were tested for reactivity with MAbs in a Western immunoblot assay. Sequencing of deletion constructs at the reactive-nonreactive transition point localized the epitope recognized by the three neutralizing MAbs within or near a repeat amino acid sequence (NIYFNIY) of the putative protein. This repeat sequence region is surrounded on either side by two potential N-glycosylation sites and three cysteine residues.  相似文献   

8.
B细胞抗原表位的研究对免疫原性多肽和新型疫苗分子的设计都起着指导作用,同时也有利于诊断试剂的开发以及临床疾病的诊断。本文综述了近年来实验确定和理论预测B细胞蛋白质抗原表位的常用方法,以及B细胞抗原表位分析的研究方法。  相似文献   

9.
Experiments were carried out to investigate the ability of rabbit anti-idiotype antibodies (Ab2), directed against an anti-human cytomegalovirus monoclonal antibody (Ab1), to induce neutralizing antibodies specific for the immunodominant glycoprotein B viral complex. Mice immunized with Ab2 produced anti-Ab2 (Ab3) that was both antigen and idiotype specific with regard to Ab1. We conclude that the Ab2 antibodies mimicked a neutralizing epitope and acted as a network antigen for inducing a specific anti-human cytomegalovirus antibody response in this experimental system.  相似文献   

10.
The oral streptococci Streptococcus sanguinis, Streptococcus gordonii and Streptococcus oralis are common aetiological agents of infective endocarditis, and their ability to adhere to and induce the aggregation of platelets is thought to be a virulence trait. The platelet glycoprotein GPIbalpha has been implicated as the adhesion receptor for S. sanguinis and S. gordonii, but it is not known if this is the case for S. oralis and other species. The aim of this study was to determine the GPIbalpha-interactive capability of a range of oral streptococci and to determine the relationship between this capability and their ability to interact with the salivary constituents that they would encounter in their normal habitat. All platelet-adhesive S. sanguinis strains and most S. gordonii strains adhered in a GPIbalpha-dependent manner, but strains of S. oralis, Streptococcus cristatus, Streptococcus parasanguinis and Streptococcus mitis had no direct affinity for platelets. Those strains that were able to bind GPIbalpha also bound to the low-molecular-weight submandibular salivary mucin, MG2, and this interaction was sialic acid-dependent. The data suggest that S. sanguinis and S. gordonii may be efficient colonizers of platelet vegetations because of their adaptation to recognize sialylated salivary mucins. In contrast, S. oralis does not interact with platelets and so is likely to colonize vegetations through an as yet unidentified mechanism.  相似文献   

11.
We describe the production and characterization of a monoclonal antibody specific for platelets. This antibody reacts strongly with human and primate platelets, but does not recognise human monocytes, polymorphonuclear leucocytes, lymphocytes, erythrocytes, leukaemic nor fibroblast cell lines, nor rodent platelets. Immunoprecipitation studies using radiolabelled platelet membrane proteins showed that the monoclonal antibody binds to the platelet membrane glycoprotein IIb-IIIa complex. Affinity chromatography using immobilized monoclonal antibody allows purification of the antigen, but also co-purifies the cytoskeletal proteins actin and myosin.Our results demonstrate immunochemically that although the GP IIb-IIIa complex is an external structure, it is connected through the cell membrane to the microfilament system.  相似文献   

12.
Platelet activation is accompanied by the appearance on the platelet surface of approximately 45,000 receptor sites for fibrinogen. The binding of fibrinogen to these receptors is required for platelet aggregation. Although it is established that the fibrinogen receptor is localized to a heterodimer complex of the membrane glycoproteins, IIb and IIIa, little is known about the changes in this complex during platelet activation that result in the expression of the receptor. In the present studies, we have developed and characterized a murine monoclonal anti-platelet antibody, designated PAC-1, that binds to activated platelets, but not to unstimulated platelets. PAC-1 is a pentameric IgM that binds to agonist-stimulated platelets with an apparent Kd of 5 nM. Binding to platelets is dependent on extracellular Ca2+ (KCa = 0.4 microM) but is not dependent on platelet secretion. Platelets stimulated with ADP or epinephrine bind 10,000-15,000 125I-PAC-1 molecules/platelet while platelets stimulated with thrombin bind 20,000-25,000 molecules/platelet. Several lines of evidence indicate that PAC-1 is specific for the glycoprotein IIb.IIIa complex. First, PAC-1 binds specifically to the IIb.IIIa complex on Western blots. Second, PAC-1 does not bind to thrombasthenic platelets or to platelets preincubated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 37 degrees C, both of which lack the intact IIb.IIIa complex. Third, PAC-1 competitively inhibits the binding of 125I-A2A9, and IgG monoclonal antibody that is specific for the IIb.IIIa complex. Fourth, the antibody inhibits fibrinogen-mediated platelet aggregation. These data demonstrate that PAC-1 recognizes an epitope on the IIb.IIIa complex that is located near the platelet fibrinogen receptor. Platelet activation appears to cause a Ca2+-dependent change involving the glycoprotein IIb.IIIa complex that exposes the fibrinogen receptor and, at the same time, the epitope for PAC-1.  相似文献   

13.
Fibronectin binds to specific receptors on the surface of washed, thrombin-activated platelets. Evidence suggests that these receptors are closely associated with the platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa). To determine whether GP IIb-IIIa itself can form a platelet receptor for fibronectin, we used a filtration assay to examine the interaction of purified fibronectin with purified GP IIb-IIIa incorporated into phospholipid vesicles. 125I-Fibronectin binding to the phospholipid vesicles required the presence of incorporated GP IIb-IIIa and was specific, time-dependent, reversible, saturable, and divalent cation-dependent (Mg2+ greater than Ca2+). The dissociation constant for 125I-fibronectin binding to the GP IIb-IIIa-containing vesicles in the presence of 2 mM MgCl2 was 87 nM. Proteins or peptides that inhibit 125I-fibronectin binding to whole platelets also inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. Thus, specific 125I-fibronectin binding was inhibited by excess unlabeled fibrinogen or fibronectin, the anti-GP IIb-IIIa monoclonal antibody 10E5, the decapeptide from the carboxyl terminus of the fibrinogen gamma-chain, and the tetrapeptide Arg-Gly-Asp-Ser from the cell-binding domain of fibronectin. In contrast to results obtained using whole platelets, unlabeled fibronectin inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. These results show that 125I-fibronectin binds directly to purified GP IIb-IIIa with most of the previously reported properties of 125I-fibronectin binding to washed, thrombin-stimulated platelets. Thus, GP IIb-IIIa has the potential to function as a platelet receptor for fibronectin as well as for fibrinogen.  相似文献   

14.
A murine monoclonal antibody, designated AP-2, reacts specifically with the complex formed by human platelet membrane glycoproteins IIb and IIIa, but does not react at all with the individual glycoproteins. Purified AP-2 covalently coupled to Sepharose CL4B was used as an immunoadsorbent column to purify the IIb-IIIa complex from a preparation of Triton X-100-solubilized human platelet proteins. Radioiodinated AP-2 was shown to bind to a single class of sites, with 57,400 +/- 9,700 molecules bound per cell (mean +/- S.D.) at saturation and a dissociation constant (Kd) of 0.64 +/- 0.15 nM (mean +/- S.D.). Binding could not be readily reversed even after a 1-h incubation with a 100-fold excess of cold antibody. AP-2 inhibits ADP-induced binding of radiolabeled fibrinogen to gel-filtered platelets in a noncompetitive fashion, consistent with the previous observation that AP-2 also inhibits the aggregation of platelets in plasma induced by a number of physiologic agonists, including adenosine diphosphate, epinephrine, collagen, thrombin, and arachidonic acid. Using AP-2, we have obtained evidence that the IIb-IIIa complex exists in the membrane of intact nonstimulated platelets and that complex integrity is not affected by external calcium ion concentration.  相似文献   

15.
The interaction of platelet membrane glycoprotein (GP) Ib-IX complex with the cytoplasmic membrane skeleton is potentially of major importance in regulating platelet function. Indirect evidence suggested that this interaction is mediated by actin-binding protein, but it is not known whether GP Ib-IX and actin-binding protein associate directly. To examine more closely the nature of this association, purified GP Ib-IX complex was specifically bound and oriented on the surface of impermeable polymer beads via a monoclonal antibody, AK 2, directed against the extracytoplasmic domain of GP Ib alpha (glycocalicin). Binding was specific since 1) it was abolished by excess unlabeled actin-binding protein; 2) there was no detectable specific binding of radiolabeled actin-binding protein to beads coated with glycocalicin, the major extracytoplasmic proteolytic fragment of GP Ib alpha; and 3) unlike actin-binding protein, there was no specific binding of bovine serum albumin or human platelet vinculin to the GP Ib-IX complex-coated beads. Binding of actin-binding protein to the GP Ib-IX complex-coated beads, but not to the glycocalicin-coated beads, was saturable and reversible (apparent Kd = 1 x 10(-7) M). These experiments provide direct evidence that actin-binding protein can bind to the cytoplasmic domain of a membrane glycoprotein. Because actin-binding protein is found submembranously in cells other than the platelet, it is possible that this protein may link actin filaments to the plasma membrane in those cells.  相似文献   

16.
GspB and Hsa are homologous serine-rich surface glycoproteins of Streptococcus gordonii strains M99 and Challis, respectively, that mediate the binding of these organisms to platelet membrane glycoprotein (GP) Ibalpha. Both GspB and Hsa consist of an N-terminal putative signal peptide, a short serine-rich region, a region (BR) that is rich in basic amino acids, a longer serine-rich region and a C-terminal cell wall anchoring domain. To further assess the mechanisms for GspB and Hsa binding, we investigated the binding of the BRs of GspB and Hsa (expressed as glutathione S-tranferase fusion proteins) to sialylated glycoproteins in vitro. Both fusion proteins showed significant levels of binding to sialylated moieties on fetuin and GPIbalpha. In contrast, the corresponding region of a GspB homologue of Streptococcus agalactiae, which is acidic rather than basic, showed no binding to either fetuin or GPIbalpha. As measured by surface plasmon resonance kinetic analysis, GspB- and Hsa-derived fusion proteins had high affinity for GPIbalpha, but with somewhat different dissociation constants. Dot blot analysis using a panel of synthesized oligosaccharides revealed that the BR of Hsa can bind both alpha(2-3) sialyllactosamine [NeuAcalpha(2-3)Galbeta(1-4)GlcNAc] and sialyl-T antigen [NeuAcalpha(2-3)Galbeta(1-3)GalNAc], whereas the BR of GspB only bound sialyl-T antigen. Moreover, far Western blotting using platelet membrane proteins revealed that GPIbalpha is the principal receptor for GspB and Hsa on human platelets. The combined results indicate that the BRs of GspB and Hsa are the binding domains of these adhesins. However, the subsets of carbohydrate structures on GPIbalpha recognized by the binding domains appear to be different between the two proteins.  相似文献   

17.
Gp210 is a major transmembrane glycoprotein associated with the nuclear pore complex that is suggested to be important for organizing pore complex architecture and assembly. A mouse monoclonal IgG directed against an epitope in the lumenal domain of rat gp210 was expressed in cultured rat cells by microinjection of mRNA prepared from a hybridoma cell line. The expressed IgG, which becomes assembled into a functional antibody in the lumen of the endoplasmic reticulum, bound to the nuclear envelope in vivo. Expression of anti-gp210 antibody in interphase cells specifically reduced approximately fourfold the mediated nuclear import of a microinjected nuclear protein (nucleoplasmin) coupled to gold particles. The antibody also significantly decreased nuclear influx of a 10-kD dextran by passive diffusion. This transport inhibition did not result from removal of pore complexes from nuclear membranes or from gross alterations in pore complex structure, as shown by EM and immunocytochemistry. A physiological consequence of this transport inhibition was inhibition of cell progression from G2 into M phase. Hence, binding of this antibody to the lumenal side of gp210 must have a transmembrane effect on the structure and functions of the pore complex. These data argue that gp210 is directly or indirectly connected to pore complex constituents involved in mediated import and passive diffusion.  相似文献   

18.
Glycoprotein (GP) Ib-IX-V binds von Willebrand factor (VWF), initiating thrombosis at high shear stress. The VWF-A1 domain binds the N-terminal domain of GPIbalpha (His1-Glu282); this region contains seven leucine-rich repeats (LRR) plus N- and C-terminal flanking sequences and an anionic sequence containing three sulfated tyrosines. Our previous analysis of canine/human and human/canine chimeras of GPIbalpha expressed on Chinese hamster ovary (CHO) cells demonstrated that LRR2-4 (Leu60-Glu128) were crucial for GPIbalpha-dependent adhesion to VWF. Paradoxically, co-crystal structures of the GPIbalpha N-terminal domain and GPIbalpha-binding VWF-A1 under static conditions revealed that the LRR2-4 sequence made minimal contact with VWF-A1. To resolve the specific functional role of LRR2-4, we compared wild-type human GPIbalpha with human GPIbalpha containing a homology domain swap of canine for human sequence within Leu60-Glu128 and a reverse swap (canine GPIbalpha with human Leu60-Glu128) for the ability to support adhesion to VWF under flow. Binding of conformation-specific anti-GPIbalpha antibodies and VWF binding in the presence of botrocetin (which does not discriminate between species) confirmed equivalent expression of wild-type and mutant receptors in a functional form competent to bind ligand. Compared with CHO cells expressing wild-type GPIbalpha, cells expressing GPIbalpha, where human Leu60-Glu128 sequence was replaced by canine sequence, supported adhesion to VWF at low shear rates but became increasingly ineffective as shear increased from 50 to 2000 s(-1). Together, these data demonstrate that LRR2-4, encompassing a pronounced negative charge patch on human GPIbalpha, is essential for GPIbalpha.VWF-dependent adhesion as hydrodynamic shear increases.  相似文献   

19.
Yan R  Mo X  Paredes AM  Dai K  Lanza F  Cruz MA  Li R 《Biochemistry》2011,50(49):10598-10606
The glycoprotein Ib-IX (GPIb-IX) complex expressed on platelet plasma membrane is involved in thrombosis and hemostasis via the initiation of adhesion of platelets to von Willebrand factor (VWF) exposed at the injured vessel wall. While most of the knowledge of the GPIb-IX complex was obtained from studies on platelets and transfected mammalian cells expressing the GPIb-IX complex, there is not an in vitro membrane system that allows systematic analysis of this receptor. The phospholipid bilayer Nanodisc composed of a patch of phospholipid surrounded by membrane scaffold protein is an attractive tool for membrane protein study. We show here that the GPIb-IX complex purified from human platelets has been reconstituted into the Nanodisc. The Nanodisc-reconstituted GPIb-IX complex was able to bind various conformation-sensitive monoclonal antibodies. Furthermore, it bound to VWF in the presence of botrocetin with an apparent K(d) of 0.73 ± 0.07 nM. The binding to VWF was inhibited by anti-GPIbα antibodies with epitopes overlapping with the VWF-binding site, but not by anti-GPIbβ monoclonal antibody RAM.1. Finally, the Nanodisc-reconstituted GPIb-IX complex exhibited ligand binding activity similar to that of the isolated extracellular domain of GPIbα. In conclusion, the GPIb-IX complex in Nanodiscs adopts a native-like conformation and possesses the ability to bind its natural ligands, thus making a Nanodisc a suitable in vitro platform for further investigation of this hemostatically important receptor complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号