首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OK cells, derived from an American opossum kidney, were analyzed for proximal tubular transport functions. In monolayers, L-glutamate, L-proline, L-alanine, and alpha-methyl-glucopyranoside (alpha-methyl D-glucoside) were accumulated through Na+-dependent and Na+-independent transport pathways. D-Glucose and inorganic sulfate were accumulated equally well in the presence or absence of Na+. Influx of inorganic phosphate was only observed in the presence of Na+. Na+/alpha-methyl D-glucoside uptake was preferentially inhibited by phlorizin and D-glucose uptake by cytochalasin B. An amiloride-sensitive Na+-transport was also identified. In isolated apical vesicles (enriched 8-fold in gamma-glutamyltransferase), L-glutamate, L-proline, L-alanine, alpha-methyl D-glucoside and inorganic phosphate transport were stimulated by an inwardly directed Na+-gradient as compared to an inwardly directed K+-gradient. L-Glutamate transport required additionally intravesicular K+. D-Glucose transport was similar in the presence of a Na+- and a K+-gradient. Na+/alpha-methyl D-glucoside uptake was inhibited by phlorizin whereas cytochalasin B had no effect on Na+/D-glucose transport. An amiloride-sensitive Na+/H+ exchange mechanism was also found in the apical vesicle preparation. It is concluded that the apical membrane of OK cells contains Na+-coupled transport systems for amino acids, hexoses, protons and inorganic phosphate. D-Glucose appears a poor substrate for the Na+/hexose transport system.  相似文献   

2.
1. When yeast N.C.Y.C. 240 was grown with maltose in a complex medium based on yeast extract and peptone, washed cell preparations fermented alpha-methyl glucoside much more slowly than maltose. 2. The yeast absorbed alpha-methyl[14C]glucoside from a 10mM solution in the presence of antimycin and iodoacetamide, producing [14C]glucose, which accumulated outside the cells. The yeast itself contained hexose phosphates, trehalose, alpha-methyl glucoside and other products labelled with 14C, but no alpha-methyl glucoside phosphate. 3. About 1 equiv. of protons was absorbed with each equivalent of alpha-methylglucoside, and 1 equiv. of K+ ions left the yeast. 4. alpha-Thioethyl glucoside was also absorbed along with protons. Studies by g.l.c. showed that the yeast concentrated the compound without metabolizing it. 5. The presence of trehalose, sucrose, maltose, L-sorbose, glucose or alpha-phenyl glucoside in each case immediately stimulated proton uptake, whereas fructose, 3-O-methylglucose and 2-deoxyglucose failed to do so. 6. The observations support the conclusion that alpha-thioethyl glucoside, alpha-methyl glucoside and maltose are substrates of one or more proton symports, whereas they seem inconsistent with the notion that the absorption of alpha-methyl glucoside involves the phosphorylation of the carbohydrate [Van Stevenick (1970) Biochim. Biophys. Acta 203, 376-384].  相似文献   

3.
In the apical membrane of epithelial cells from the small intestine and the kidney, the high-affinity Na+/d-glucose cotransporter SGLT1 plays a crucial role in selective sugar absorption and reabsorption. How sugars are selected at the molecular level is, however, poorly understood. Here atomic force microscopy (AFM) was employed to investigate the substrate specificity of rbSGLT1 on the single-molecule level, while competitive-uptake assays with isotope-labeled sugars were performed in the study of the stereospecificity of the overall transport. rbSGLT1-transfected Chinese hamster ovary (CHO) cells were used for both approaches. Evidence of binding of d-glucose to the extracellular surface of rbSGLT1 could be obtained using AFM tips carrying 1-thio-d-glucose coupled at the C1 position to a PEG linker via a vinylsulfon group. Competition experiments with monosaccharides in solution revealed the following selectivity ranking of binding: 2-deoxy-d-glucose >or= 6-deoxy-d-glucose > d-glucose > d-galactose >or= alpha-methyl glucoside; 3-deoxy-d-glucose, d-xylose, and l-glucose did not measurably affect binding. These results were different from those of competitive alpha-methyl glucoside transport assays, where the ranking of inhibition was as follows: d-glucose > d-galactose > 6-deoxy-d-glucose; no uptake inhibition by d-xylose, 3-deoxy-d-glucose, 2-deoxy-d-glucose, or l-glucose was observed. Taken together, these results suggest that the substrate specificity of SGLT1 is determined by different recognition sites: one possibly located at the surface of the transporter and others located close to or within the translocation pathway.  相似文献   

4.
The pig kidney-cell line, LLC-PK1, possesses gamma-glutamyltransferase with properties similar to those of the purified renal enzyme. gamma-Glutamyltransferase activity increases after cells are seeded at low density to reach values comparable with those found in kidney cortex when the cells are fully confluent. This increase is paralleled by an increase in alpha-methyl D-glucoside uptake. In contrast, the uptakes of L-leucine and L-alanine decrease during this time. These results suggest that gamma-glutamyltransferase is not important as a mediator of the renal transport of neutral amino acids.  相似文献   

5.
The transport of four amino acids (L-methionine, L-phenylalanine, L-lysine and L-alanine) was studied during pH-regulated dimorphism in Candida albicans and its stable, non-germinative variant. The permeases responsible for uptake responded differently to differentiation and the transport activities varied during the course of morphogenesis. An increase in uptake around the time of evagination was observed in all four amino acids in both the strains studied. The uptake rates of L-methionine and L-phenylalanine were greater in fully differentiated hyphae, while the rate of L-lysine was higher in fully differentiated buds. Uptake rates of L-alanine, however, did not show any morphotypic related variation. The possible implication of these transport activities in relation to differentiation is discussed.  相似文献   

6.
Rat liver basolateral plasma membrane (blLPM) vesicles resuspended in 5 mM Mg2(+)-, Ca2(+)-, Mn2(+)- or Co2(+)-containing media exhibited a markedly lower rate of Na(+)-stimulated L-alanine transport. Divalent cation inhibition of L-alanine uptake was dose dependent, and was observed only when the vesicles were pre-loaded with the divalent cations. The presence or absence of the metal ions in the extravesicular incubation media had no effect on L-alanine transport. Conversely, pretreatment of the vesicles with 0.2 mM of either EGTA or EDTA resulted in higher initial rates of L-alanine transport. This stimulation was overcome by addition of excess divalent cation to the vesicle suspension solution. Since these blLPM vesicles are primarily oriented right-side-out, the divalent cation inhibition of L-alanine transport appears to be a result of their interaction with cytosolic components of the cell membrane. Total Na+ flux as measured with 22Na+ was not affected by intravesicular 5 mM Mg2+ or Ca2+, indicating that the inhibition was not due to dissipation of the Na+ gradient. These observations suggest that intracellular divalent cations may serve to modulate L-alanine transport across the liver cell plasma membrane.  相似文献   

7.
In thoroughbred horses, red blood cell amino acid transport activity is Na(+)-independent and controlled by three codominant genetic alleles (h, l, s), coding for high-affinity system asc1 (L-alanine apparent Km for influx at 37 degrees C congruent to 0.35 mM), low-affinity system asc2 (L-alanine Km congruent to 14 mM), and transport deficiency, respectively. The present study investigated amino acid transport mechanisms in red cells from four wild species: Przewalski's horse (Equus przewalskii), Hartmann's zebra (Zebra hartmannae), Grevy's zebra (Zebra grevyi), and onager (Equus hemonius). Red blood cell samples from different Przewalski's horses exhibited uniformly high rates of L-alanine uptake, mediated by a high-affinity asc1-type transport system. Mean apparent Km and Vmax values (+/- SE) for L-alanine influx at 37 degrees C in red cells from 10 individual animals were 0.373 +/- 0.068 mM and 2.27 +/- 0.11 mmol (L cells.h), respectively. As in thoroughbreds, the Przewalski's horse transporter interacted with dibasic as well as neutral amino acids. However, the Przewalski asc1 isoform transported L-lysine with a substantially (6.4-fold) higher apparent affinity than its thoroughbred counterpart (Km for influx 1.4 mM at 37 degrees C) and was also less prone to trans-stimulation effects. The novel high apparent affinity of the Przewalski's horse transporter for L-lysine provides additional key evidence of functional and possible structural similarities between asc and the classical Na(+)-dependent system ASC and between these systems and the Na(+)-independent dibasic amino acid transport system y+. Unlike Przewalski's horse, zebra red cells were polymorphic with respect to L-alanine transport activity, showing high-affinity or low-affinity saturable mechanisms of L-alanine uptake. Onager red cells transported this amino acid with intermediate affinity (apparent Km for influx 3.0 mM at 37 degrees C). Radiation inactivation analysis was used to estimate the target size of system asc in red cells from Przewalski's horse. The transporter's in situ apparent molecular weight was 158,000 +/- 2500 (SE).  相似文献   

8.
Sodium-dependent glucose transport by cultured proximal tubule cells   总被引:1,自引:0,他引:1  
The cotransport of sodium ion and alpha-methyl glucose, a non-metabolized hexose, was studied in rabbit proximal tubule cells cultured in defined medium. The rate of uptake of alpha-methyl glucose shows saturation kinetics, in which Km, but not Vmax, is dependent upon the Na+ concentration in the medium. The transport system was found to be of the high-affinity type, characteristic of the straight portion of the proximal tubule. Analysis of the rates of initial uptake within the context of a generalized cotransport model, suggests that two Na+ ions are bound in the activation of the hexose transport. The steady-state level of accumulation of alpha-methyl glucose also depends upon sodium concentration, consistent with the initial rate findings. The uptake of alpha-methyl glucose is inhibited by other sugars with the relative potencies of D-glucose greater than alpha-methyl glucose greater than D-galactose = 3-O methylglucose. L-Glucose, D-fructose, and D-mannose show no inhibition. Phlorizin inhibits the alpha-methyl glucose uptake with a Ki of 9 X 10(-6) M. Ouabain (10(-3) M) decreases the steady-state alpha-methyl glucose accumulation by 60%. In the absence of sodium, the accumulation of alpha-methyl glucose is 7-fold less than at 142 mM Na+, reaching a level comparable to the sodium-independent accumulation of 3-O-methyl-D-glucose. These findings are similar to those observed in the proximal tubule of the intact kidney.  相似文献   

9.
With a clone of (Cl 4) of LLC-PK cells, which develop a high capacity for Na+-dependent hexose uptake over time (days) in culture, we show that increasing uptake capacity is paralleled by an increase in the number of phlorizin-binding sites in the population. The linear relationship between binding and hexose transport is the same whether the cells differentiate spontaneously or are induced by either methylisobutylxanthine or hexamethylene bisacetamide. The constancy of the relationship suggests that the primary factor in transport development is the number of transporters in the cells rather than other possible factors like a change in membrane potential or decreased efflux. The Kd for phlorizin binding is .08 +/- .04 microM, and corresponds to Ki of 0.10 microM for transport inhibition. The turnover number of the transporter is estimated to be 170 +/- 40 molecules per second of alpha-methyl glucoside.  相似文献   

10.
The rat osteosarcoma cell line UMR-106–01 has an osteoblast-like phenotype. When grown in monolyer culture these cells transport inroganic phosphate and L-alanine via Na+-dependent transport systems. Exposure of these cells to a low phosphate medium for 4 h produced a 60–70 per cent increase in Na+-dependent phosphate uptake compared to control cells maintained in medium with a normal phosphate concentration. In contrast, Na+-dependent alanine uptake and Na+-independent phosphate uptake were not changed during phosphate deprivation. The increased phosphate uptake was due, in part, to an increased Vmax and was blocked completely by pretreatment with cycloheximide (70 μM). In these cells recovery of intracellular pH after acidification with NH4Cl is due primarily to the Na+/H+ exchange system. The rate of this recovery process, monitored with a pH sensitive indicator (BCECF), was decreased by more than 50 per cent in phosphate-deprived cells compared to controls indicating that Na+/H+ exchange was inhibited during phosphate deprivation.  相似文献   

11.
The effects of the histidine modifier, diethyl pyrocarbonate (DEPC), on brush-border membrane transport systems were studied in rat kidney. DEPC caused a strong inhibition of sodium-dependent phosphate and D-glucose uptake. Phosphate uptake remained linear up to 10 s in control and DEPC-treated membrane vesicles. The D-glucose carrier was more sensitive than the phosphate carrier with half-times of inhibition being 4 and 7 min, respectively. Sodium-independent phosphate and D-glucose uptake remained unaffected by DEPC. Intravesicular volume and two enzyme activities endogenous to the luminal membrane (alkaline phosphatase and aminopeptidase M) remained unaffected by DEPC. Increasing the preincubation pH from 5 to 9 increased phosphate transport inhibition caused by DEPC from 73 to 88% in the presence of DEPC. Hydroxylamine was able to completely reverse phosphate uptake inhibition by DEPC (100%), but only partially reversed the D-glucose uptake inhibition (16%). Sodium or substrate (D-glucose or phosphate) in the preincubation media were unable to protect their respective carriers from DEPC. Sodium-dependent transport of L-glutamine, L-phenylalanine, L-leucine, L-alanine, L-glycine, beta-alanine and L-proline were inhibited at different levels ranging from 70 to 90%. Three transport processes were found insensitive to DEPC modification: L-glutamate, L-lysine and D-fructose. None of the amino acid transporters was protected against DEPC by sodium and/or their respective substrates. Sodium influx was inhibited by DEPC (47%) in the absence of any substrate. Our results show a differential sensitivity of sodium-dependent transporters to DEPC and suggest an important role for histidine residues in the molecular mechanisms of these transporters. More experiments are in progress to further characterize the residue(s) involved in these transport inhibitions by DEPC.  相似文献   

12.
The properties of Na+-dependent L-alanine transport in human erythrocytes were investigated using K+ as the Na+ substitute. Initial rates of Na+-dependent L-alanine uptake (0.2 mM extracellular amino acid) for erythrocytes from 22 donors ranged from 40 to 180 mumol/litre of cells per h at 37 degrees C. Amino acid uptake over the concentration range 0.1-8 mM was consistent with a single saturable component of Na+-dependent L-alanine transport. Apparent Km and Vmax. values at 37 and 5 degrees C measured in erythrocytes from the same donor were 0.27 and 0.085 mM respectively, and 270 and 8.5 mumol/litre of cells per h respectively. The transporter responsible for this uptake was identified as system ASC on the basis of cross-inhibition studies with a series of 42 amino acids and amino acid analogues. Apparent Ki values for glycine, L-alpha-amino-n-butyrate, L-serine and L-leucine as inhibitors of Na+-dependent L-alanine uptake at 37 degrees C were 4.2, 0.12, 0.16 and 0.70 mM respectively. Reticulocytes from a patient with inherited pyruvate kinase deficiency were found to have a 10-fold elevated activity of Na+-dependent L-alanine uptake compared with erythrocytes from normal donors. Separation of erythrocytes according to cell density (cell age) established that even the oldest mature erythrocytes retained significant Na+-dependent L-alanine transport activity. Amino acid transport was, however, a more sensitive indicator of cell age than acetylcholinesterase activity. Erythrocytes were found to accumulate L-alanine against its concentration gradient (distribution ratio approx. 1.5 after 4 h incubation), an effect that was abolished in Na+-free media. Na+-dependent L-alanine uptake was shown to be associated with L-alanine-dependent Na+ influx, the measured coupling ratio being 1:1.  相似文献   

13.
The specificity of amino acid transport in normal (high-glutathione) sheep erythrocytes was investigated by studying the interaction of various neutral and dibasic amino acids in both competition and exchange experiments. Apparent Ki values were obtained for amino acids as inhibitors of L-alanine influx. Amino acids previously found to be transported by high-glutathione cells at fast rates (L-cysteine, L-alpha-amino-n-butyrate) were the most effective inhibitors. D-Alanine and D-alpha-amino-n-butyrate were without effect. Of the remaining amino acids studied, only L-norvaline, L-valine, L-norleucine, L-serine and L-2,4-diamino-n-butyrate significantly inhibited L-alanine uptake. L-Alanine efflux from pre-loaded cells was markedly stimulated by extracellular L-alanine. Those amino acids that inhibited L-alanine influx also stimulated L-alanine efflux. In addition, D-alanine, D-alpha-amino-n-biutyrate, L-threonine, L-asparagine, L-alpha, beta-diaminoproprionate, L-ornithine, L-lysine and S-2-aminoethyl-L-cysteine also significantly stimulated L-alanine efflux. L-Lysine uptake was inhibited by L-alanine but not by D-alanine, and the inhibitory potency of L-alanine was not influenced by the replacement of Na+ in the incubation medium with choline. L-Lysine efflux from pre-loaded cells was stimulated by L-alanine but not by D-alanine. It is concluded that these cells possess a highly selective stero-specific amino acid-transport system. Although the optimum substrates are small neutral amino acids, this system also has a significant affinity for dibasic amino acids.  相似文献   

14.
Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism.  相似文献   

15.
In order to evaluate the influence of membrane fluidization on three apical transport systems and on a basolateral enzyme, and to analyse the mechanisms involved, we studied, in cultured rabbit proximal tubular cells, the effect of increasing concentrations of the local anesthetic drug benzyl alcohol on Na(+)-dependent uptakes of phosphate (Pi), methyl alpha-D-glucopyranoside (MGP), and L-alanine, as well as on basal and stimulated cyclic AMP content. At 10 mM, benzyl alcohol increased the Vmax of Pi uptake by 31%, decreased that of MGP uptake by 24%, and did not affect alanine uptake. Km values were not affected. Benzyl alcohol, up to 40 mM, increased in a concentration-dependent manner basal, PTH-stimulated, and cholera toxin-stimulated, but not forskolin-stimulated cyclic AMP accumulation. In the presence of 40 mM benzyl alcohol, the magnitude of PTH-induced inhibition of Pi uptake was enhanced from 11% to 24%. It is concluded that: (i) fluidization of apical membranes affected differently Na+/Pi, Na+/MGP, and Na+/alanine cotransports, reflecting differences in the lipidic environments of these transport system; (ii) fluidization of basolateral membranes enhanced PTH-stimulated cyclic AMP generation through improved coupling between the receptor-GS complex and the catalytic subunit of adenylate cyclase; (iii) these variations may result in physiological and pathophysiological modulation of the renal handling of solutes and of the phosphaturic effect of PTH.  相似文献   

16.
Pre-incubation of cells of Saccharomyces cerevisiae with 2 M-ethanol led to decreased rates of L-alanine uptake, H+ efflux and fermentation rate. However, these responses were modified in yeast cells with altered phospholipid composition. Using L-alanine transport and H+ efflux as indices of ethanol tolerance, it was observed that cells enriched with phosphatidylserine had greater tolerance to ethanol. This resulted from altered charge of membrane phospholipids rather than changes in membrane fluidity. It is suggested that the anion:zwitterion ratio of phospholipids may be one of the important determinants of ethanol tolerance in S. cerevisiae.  相似文献   

17.
L-Alanine transport across the isolated duodenal mucosa of the lizard Gallotia galloti has been studied in Ussing chambers under short-circuit conditions. Net L-alanine fluxes, transepithelial potential difference (PD), and short-circuit current (Isc) showed concentration-dependent relationships. Na(+)-dependent L-alanine transport was substantially inhibited by the analog alpha-methyl aminoisobutyric acid (MeAIB). Likewise, MeAIB fluxes were completely inhibited by L-alanine, indicating the presence of system A for neutral amino acid transport. System A transport activity was electrogenic and exhibited hyperbolic relationships for net MeAIB fluxes, PD, and Isc, which displayed similar apparent K(m) values. Na(+)-dependent L-alanine transport, but not MeAIB transport, was partially inhibited by L-serine and L-cysteine, indicating the participation of system ASC. This transport activity represents the major pathway for L-alanine absorption and seemed to operate in an electroneutral mode with a negligible contribution to the L-alanine-induced electrogenicity. It is concluded from the present study that the active Na(+)-dependent L-alanine transport across the isolated duodenal mucosa of Gallotia galloti results from the independent activity of systems A and ASC for neutral amino acid transport.  相似文献   

18.
Phosphorus(P)-starved cells of the cyanobacterium Phormidium laminosum have been investigated in relation to their phosphate uptake characteristics. P-deficient cells showed much higher phosphate uptake rates from ultrapure water supplemented with this anion than P-sufficient ones. After 9 days of starvation in P-free medium, the total cellular P content of P-deficient cells was approximately five times lower than that of cells grown in the presence of phosphate. Phosphate uptake by P-deficient cells occurred in both light and dark under aerobic conditions. In anaerobiosis, light was required for uptake, suggesting that the necessary energy could be derived from the respiratory electron transport chain. Phosphate uptake in P-deficient cells was sensitive to vanadate, suggesting the involvement of a plasma membrane ATPase.  相似文献   

19.
In this report, we provide evidence that the transport of sugars in Streptococcus mutans via the multiple sugar metabolism system is regulated by the phosphoenolpyruvate phosphotransferase system. A ptsI-defective mutant (DC10), when grown on the multiple sugar metabolism system substrate raffinose, exhibited reduced growth, transport, and glycolytic activity with raffinose relative to the parent strain BM71. Inhibition of [3H]raffinose uptake was also observed in both BM71 and DC10 with increasing concentrations of glucose and the glucose analogs alpha-methyl glucoside and 2-deoxyglucose.  相似文献   

20.
The pH dependence of transport of the neutral amino acids L-serine and L-alanine by membrane vesicles of Streptococcus cremoris have been studied in detail. The rates of four modes of facilitated diffusion (e.g., influx, efflux, exchange, and counterflow) of L-serine and L-alanine increase with increasing H+ concentration. Rates of artificially imposed electrical potential across the membrane (delta psi)-driven transport of L-serine and L-alanine show an optimum at pH 6 to 6.5. Under similar conditions, delta psi- and pH gradient across the membrane (delta pH)-driven transport of L-leucine is observed within the pH range studied (pH 5.5 to 7.5). The effect of ionophores on the uptake of L-alanine and L-serine has been studied in membrane vesicles of S. cremoris fused with proteoliposomes containing beef heart mitochondrial cytochrome c oxidase as a proton motive force (delta p)-generating system (Driessen et al., Proc. Natl. Acad. Sci. USA 82:7555-7559, 1985). An increase in the initial rates of L-serine and L-alanine uptake is observed with decreasing pH, which is not consistent with the pH dependency of delta p. Nigericin, an ionophore that induced a nearly complete interconversion of delta pH into delta psi, stimulated both the rate and the final level of L-alanine and L-serine uptake. Valinomycin, an ionophore that induced a collapse of delta psi with a noncompensating increase in delta pH, inhibited L-alanine and L-serine uptake above pH 6.0 more efficiently than it decreased delta p. Experiments which discriminate between the effects of the internal pH and the driving force (delta pH) on solute transport indicate that at high internal pH the transport systems for L-alanine and L-serine are inactivated. A unique relation exists between the internal pH and the initial rate of uptake of L-serine and L-alanine with an apparent pK of 7.0. The rate of L-alanine and L-serine uptake decreases with increasing internal pH. The apparent complex relation between the delta p and transport of L-alanine and L-serine can be explained by a regulatory effect of the internal pH on the activity of the L-serine and L-alanine carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号