首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T4 phage and T4 ghosts inhibit f2 phage replication by different mechanisms   总被引:5,自引:0,他引:5  
Both T4 phage and DNA-free ghosts inhibit replication of RNA phage f2. Most but not all of the effects by T4 upon f2 growth can be blocked by the addition of rifampicin prior to T4 superinfection; by contrast, the inhibition of f2 synthesis by T4 ghosts cannot be blocked by rifampicin. This indicates that inhibition by intact T4 requires gene function, while inhibition by ghosts does not. There is a small, multiplicity-dependent inhibition by viable T4 on f2 growth in the presence of rifampicin which may be similar to the gene function-independent inhibition by T4 ghosts. With one viable T4 per cell, there appears to be no effect by viable T4 upon f2 growth which does not require T4 gene action. Moreover, increasing multiplicities of viable T4 appear to inhibit T4 replication as well.In the absence of rifampicin, pre-existing f2 single and double-stranded RNA are degraded after superinfection by viable T4, but remain stable after superinfection by ghosts. However, no new f2 RNA is synthesized after superinfection with either. In the presence of rifampicin, f2-specific protein synthesis is largely unaffected by viable T4, but is completely inhibited by ghosts. Both Escherichia coli, as well as f2-speciflc polysomes disappear in the presence of ghosts.We conclude that, at low multiplicities, T4 phage and T4 ghosts inhibit replication of f2 phage, and presumably host syntheses, by different mechanisms.  相似文献   

2.
In an Escherichia coli cell-free protein synthesis assay, mRNA isolated from cells late after infection by phage T4 out-competes bacteriophage f2 RNA. Addition of a saturating or subsaturating amount of T4 mRNA inhibits translation of f2 RNA, while even an excess of f2 RNA has no effect on translation of T4 mRNA. Peptide mapping of reaction products labeled with formyl-[35S]-methionyl-tRNA was used to quantitate f2 and T4 protein products synthesized in the same reaction. We suggest that messenger RNA competition might be one mechanism by which T4 superinfection of cells infected with phage f2 blocks translation of f2 RNA and possibly host mRNA.  相似文献   

3.
4.
5.
6.
Role of Gene 52 in Bacteriophage T4 DNA Synthesis   总被引:4,自引:3,他引:1       下载免费PDF全文
In an attempt to elucidate the mechanism of delayed DNA synthesis in phage T4, Escherichia coli B cells were infected with H17 (an amber mutant defective in gene 52 possessing a "DNA-delay" phenotype). The fate of (14)C-labeled H17 parental DNA after infection was followed: we could show that this DNA sediments more slowly in neutral sucrose than wild-type DNA 3 min postinfection. In pulse-chase experiments progeny DNA was found to undergo detachment from the membrane at 12 min postinfection. Reattachment to the membrane was found to be related to an increase in rate of DNA synthesis. A nucleolytic activity that is absent from cells infected by wild-type phage and from uninfected cells could be detected in extracts prepared from mutant-infected cells. In contrast, degradation of host DNA was found to be less extensive in am H17 compared with wild-type infected cells. Addition of chloramphenicol to mutant-infected cells 10 min postinfection inhibited the appearance of a nuclease activity on one hand and suppressed the "DNA-delay" phenotype on the other hand. We conclude that the gene 52 product controls the activity of a nuclease in infected cells whose main function may be specific strand nicking in association with DNA replication. This gene product might directly attack both E. coli and phage T4 DNA, or indirectly determine their sensitivity to degradation by another nuclease.  相似文献   

7.
Bacteriophage S13 shows exclusion of superinfecting homologous phage, but the exclusion is only partial. The superinfecting phage can form infectious replicative form deoxyribonucleic acid (RF), can direct protein synthesis, and can form progeny particles even at a superinfection time as late as 60 min after the first infection. Exclusion is also only partial for the closely related phage phiX174. Seven min after the first infection, the exclusion mechanism begins to operate, requiring continuous phage-specified protein synthesis. The gene A protein (required for synthesis of progeny RF) appears to be involved in the exclusion mechanism. In superinfection experiments, it was found that at least 40 phage particles per cell can replicate and can carry out protein synthesis, though the number of sites for binding of RF to the membrane is only about 15 per cell. The results suggest that attachment of RF to a binding site is not required for protein synthesis. Evidence is presented that non-attached parental RF can serve as a template for single-stranded deoxyribonucleic acid synthesis.  相似文献   

8.
One of the mechanisms underlying the regulation of the bacteriophage f2 RNA translation is the repression of the phage RNA-replicase formation by coat protein. This repression is due to the formation of a complex between f2 RNA and coat protein (complex I). In this work the mechanism of complex I formation as well as the effect of this complex on the f2 RNA-replicase formation was followed by inhibition of alanine incorporation into RNA-replicase polypeptide which was separated by polyacrylamide gel electrophoresis. The molar ratios of protein to f2 RNA in complex I were analyzed by sucrose gradient sedimentation. It was been found that complex I consists of six molecules of coat protein bound per one molecule of RNA. Ribonuclease digestion of the glutaraldehyde-fixed complex resulted in a mixture of products in which the hexamers of coat protein molecules were predominant. This indicates that the six molecules of coat protein bound to f2 RNA are neighbouring. It has been also shown that under conditions required for phage protein synthesis, coat protein occurs in solution is dimer. The results show that the translational repression of the RNA-replicase cistron is due to the cooperative attachment of three dimers of coat protein to phage template, forming a hexameric cluster on the RNA strand. The proposed mechanism of the complex I formation seems to be in good agreement with the sequence of events in the phage F2 life cycle. It is known that shortly after infection of the host cell the coat protein and phage RNA-replicase begin to be synthesised. According to our findings, the first portions of coat protein do not affect the translation of the RNA-replicase gene since at low concentration the coat protein occure in the form of monomers. At a later period of phage development, when the concentration of coat protein is sufficiently high to promote the formation of protein dimers, the translational repressor complex is formed and the RNA-replicase gene becomes inoperative.  相似文献   

9.
The release of the ribonucleic acid (RNA)-containing phage MS2 from Escherichia coli is accompanied by cellular lysis at 37 C, whereas at 30 C phage are released from intact cells. Chloramphenicol or rifampin prevents the release of progeny phage particles at both temperatures. Neither drug causes an immediate cessation of phage release and after inhibition of protein synthesis by chloramphenicol phage release proceeds for about 17 min at 37 C and about 35 min at 30 C. Rifampin does not inhibit phage release from mutant cells possessing a rifampin-resistant deoxyribonucleic acid-dependent RNA polymerase. The results indicate that a short-lived host-controlled protein(s) is essential for the release of RNA phage particles at both temperatures.  相似文献   

10.
11.
12.
13.
Mechanism of Ozone Inactivation of Bacteriophage f2   总被引:8,自引:3,他引:5       下载免费PDF全文
The inactivation kinetics of bacteriophage f2 were studied by using ozone under controlled laboratory conditions. The phage were rapidly inactivated during the first 5 s of the reaction by 5 and 7 logs at ozone concentrations of 0.09 and 0.8 mg/liter, respectively. During the next 10 min, the phage were further inactivated at a slower rate in both treatments. The [3H]uridine-labeled f2 phage and its ribonucleic acid (RNA) were examined to elucidate the mechanism of ozone inactivation, utilizing adsorption to host bacteria, sucrose density gradient analysis, and electron microscopy. The specific adsorption of the phage was reduced by ozonation in the same pattern as plaque-forming unit reduction. RNA was released from the phage particles during ozonation, although it had reduced infectivity for spheroplasts. Electron microscopic examination showed that the phage coat was broken by ozonation into many protein subunit pieces and that the specific adsorption of the phage to host pili was inversely related to the extent of phage breakage. The RNA enclosed in the phage coat was inactivated less by ozonation than were whole phage, but inactivated more than naked RNA. These findings suggest that ozone breaks the protein capsid into subunits, liberating RNA and disrupting adsorption to the host pili, and that the RNA may be secondarily sheared by a reduction with and/or without the coat protein molecules, which have been modified by ozonation.  相似文献   

14.
15.
The rate of protein synthesis by Escherichia coli markedly decreased within 1 min after phage T4 infection, whereas a complete cessation of protein synthesis was observed within at least 25 sec after T4 ghost infection. The cellular level of amino acids and aminoacyl-transfer ribonucleic acid (tRNA) did not change drastically upon infection with ghosts, indicating that the inhibition of protein synthesis took place at a step(s) beyond aminoacyl-tRNA formation. The host messenger RNA remained intact and still bound to ribosomes shortly after ghost infection. Kinetic studies of the effect of ghosts on host protein synthesis revealed that nascent peptide chains on ribosomes were not released upon ghost infection.  相似文献   

16.
Characterization of New Regulatory Mutants of Bacteriophage T4   总被引:7,自引:5,他引:2       下载免费PDF全文
Plating techniques which eliminate T4 plaque formation on Escherichia coli by folate analogue inhibition of dihydrofolate (FH(2)) reductase (EC 1.5.1.3) allowed the isolation of folate analogue-resistant (far) mutants of T4. One class of far mutants overproduces the phage-induced FH(2) reductase. Deoxycytidylate deaminase (EC 3.5.4.12), thymidine kinase (EC 2.7.1.21), and deoxycytidine triphosphatase (EC 3.6.1.12) are also overproduced by 20 min after infection at 37 C. The overproduction of FH(2) reductase by these far mutants is not affected by the absence of DNA synthesis. Other types of mutations that affect the synthesis of early enzymes cause overproduction in the absence of DNA synthesis of some of the above enzymes but not of FH(2) reductase. Therefore, overproducing far mutants apparently have mutations in previously undescribed genes controlling the expression of the T4 genome. Three of four mutants under study map near gene 56, and one maps near gene 52. All of these mutants show delays in DNA synthesis, phage production, and lysis and appear to show decreased levels of RNA synthesis based on the cumulative incorporation of uridine.  相似文献   

17.
Shigella dysenteriae cells were infected with phage P1 or P1cl. The outcome of superinfection of these cells with phage T1.Sh or T1.Sh(P1) or P1cl was studied as a function of time after the initial infection. Cells undergoing either a lytic response or a lysogenic response to the primary infection develop the ability to specifically restrict T1.Sh between 30 and 45 min. Between 15 and 30 min, the cells seem to develop the ability to produce T1.Sh(P1) after infection by T1.Sh. However, reasons are given for believing that this apparent time difference is consistent with a simultaneous development of the two capacities (restriction and modification) within the cell. This development occurs between 30 and 45 min. Cells infected with P1cl and superinfected 45 or more min later with T1.Sh(P1) can yield both P1cl and T1. Cells infected with P1 become resistant to infection by P1cl within 5 to 10 min. It is argued that this early immunity is not necessarily different in mechanism from true lysogenic immunity.  相似文献   

18.
Many early mRNA species of bacteriophage T4 are not synthesized after infection of Escherichia coli in the presence of chloramphenicol. This has been interpreted as a need for T4 protein(s) to be synthesized to allow expression of some early genes, e.g., those for deoxycytidinetriphosphatase, deoxynucleosidemonophosphate kinase and UDP-glucose-DNA beta-glucosyltransferase. In the experiments described here, early mRNA of bacteriophage T4 was allowed to accumulate during chloramphenicol treatment. After the addition of rifampin to inhibit further RNA synthesis, and subsequent removal of chloramphenicol, the accumulated mRNA was permitted to express itself into measured enzyme activities. It was shown that the early mRNA species coding for deoxycytidinetriphosphatase and UDP-glucose-DNA beta-glucosyltransferase could be formed in the presence of chloramphenicol if the E. coli host cell carried a mutation in the structural gene for the RNA chain termination factor rho. This was interpreted to mean that T4 protein(s) with anti-rho activity is normally required for the expression of these two early genes. An altered rho-factor could not, however, relieve the need of phage protein synthesis for the formation of another early mRNA, that coding for deoxynucleosidemonophosphate kinase. In this case the mot gene of T4 seemed to be involved, since the primary infection of E. coli cells with the mot gene mutant tsG1 did not allow subsequent deoxynucleoside monophosphate kinase mRNA synthesis after wild-type phage infection in the presence of chloramphenicol. In control experiments, deoxynucleoside monophosphate kinase mRNA synthesis induced by wild-type phage superinfecting in the presence of chloramphenicol was facilitated by the primary infection with T4 phage containing an unmutated mot gene.  相似文献   

19.
N Raghavan  M Ishaq    A Kaji 《Journal of virology》1980,35(2):551-554
Rts1 is a plasmid which confers upon the host bacteria the capacity to restrict T4 bacteriophage growth at 32 degrees C but not at 42 degrees C. Pulse-labeling of phage-infected cells showed that Rts1 restricts the synthesis of T1 DNA. Despite efficient restriction of T4 phage growth and DNA synthesis, infected Escherichia coli 20SO harboring Rts1 synthesized both early and late T4 phage RNA. Synthesis of early T4 phage RNA under restrictive conditions (32 degrees C) was almost equal to that found under nonrestrictive conditions, and a lesser, but significant, amount of late T4 phage RNA was made in almost complete absence of T4 DNA synthesis. Moreover, very little, if any, T4 phage-coded lysozyme was detected in the infected E. coli 20SO/Rts1 at 32 degrees C, whereas normal amounts of lysozyme were present at 42 degrees C.  相似文献   

20.
P. Daegelen  E. Brody 《Genetics》1990,125(2):249-260
When the rII genes are first introduced into cells which had been previously infected by T4 phage deleted for these genes, the kinetics of synthesis of rIIA and rIIB RNA are rapid and identical. We show that this rapid synthesis depends on a functional motA gene for rIIB, but not for rIIA, RNA synthesis. By primer-extension mapping of T4 messenger RNA, we find three promoters close to the rIIA gene. One of them is an early promoter just before the rIIA.1 gene; it is used under all conditions tested. Another is in the coding portion of the rIIA.1 gene; it is weak, primarily because of a 19-bp spacing between the -10 and -35 elements, and its use is stimulated by T4 functions. The third is a motA-dependent (middle) promoter which has an unusual CCCGCTT box at -33. We present results which suggest that none of these promoters is likely to be the site at which the motB and motC gene products exercise their major influence on rIIA RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号