首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that 4-vinylcyclohexene diepoxide (VCD)-induced ovotoxicity in rats is likely caused by acceleration of the normal rate of atresia (apoptosis). VCD-induced ovotoxicity is specific for small preantral follicles and is associated with increased activity of caspase cascades. The present study was designed to investigate the alteration of expression and distribution of several Bcl-2 family member proteins induced by dosing of VCD in rat small ovarian follicles. Female F344 rats were given a single dose of VCD (80 mg/kg, i.p., 1 day; a time when ovotoxicity is not initiated), or dosed daily for 15 days (80 mg/kg, i.p., 15 days; a time when significant ovotoxicity is underway). Four hours following the final dose, livers and ovaries were collected. Ovarian small (25-100 microm) and large (100-250 microm) preantral follicles were isolated, and subcellular fractions (cytosolic and mitochondrial) were prepared. Compared with controls, levels of the proapoptotic protein, Bad, were greater in both cytosolic and mitochondrial fractions of small preantral follicles collected from 15-day VCD-treated rats (cytosol, 1.97 +/- 0.16; mitochondria, 2.20 +/- 0.24, VCD/control, P < 0.05). After 15 days of daily VCD dosing, total cellular antiapoptotic Bcl-x(L) protein levels were unaffected in small preantral follicles, but its distribution in mitochondrial and cytosolic components was altered (mitochondria, 0.635 +/- 0.08; cytosol, 1.39 +/- 0.14, VCD/control, P < 0.05). Likewise, VCD did not affect protein levels of proapoptotic Bax in small follicles on Day 15. However, consistent with a Bax-mediated mechanism of apoptosis, the relative ratio of Bax/Bcl-x(L) in the mitochondrial fraction of small preantral follicles was significantly increased by VCD dosing (1.62 +/- 0.21, VCD/control, P < 0.05). Immunofluorescence staining intensity evaluated by confocal microscopy visualized cytochrome c protein in the cytosolic compartment in granulosa cells of preantral follicles in various stages of development. Relative to controls, within the population of small preantral follicles, staining intensity was less (P < 0.05) and presumably more diffuse, specifically in stage 1 primary follicles from VCD-treated animals (15 days). VCD caused none of these effects in large preantral follicles or liver (not targeted by VCD). These data provide evidence that the apoptosis induced by VCD in ovarian small preantral follicles of rats is associated with increased expression of Bad protein, redistribution of Bcl-x(L) protein and cytochrome c from the mitochondria to the cytosolic compartment, and an increase in the Bax/Bcl-x(L) ratio in the mitochondria. These observations are consistent with the involvement of Bcl-2 gene family members in VCD-induced acceleration of atresia.  相似文献   

2.
Protein import into mitochondria involves a number of complex steps occurring in the cytosol, on the mitochondrial surface, and inside the organelle. Once an initial interaction between mitochondrial proteins and their specific receptors occurs, the proteins are transported into the organelle in a series of reactions involving (in the case of a protein to be translocated into the mitochondrial matrix) the mitochondrial membrane potential, ATP hydrolysis and an undetermined number of membrane components. Inside the organelle, mitochondrial proteins are processed and sorted to their final intramitochondrial destinations. The earliest steps in the import process take place in the cytosol and include the synthesis of the mitochondrial proteins themselves, their interaction with cytosolic factors, and perhaps the establishment of cotranslational import complexes on the mitochondrial surface. These early events are important because it is during this phase that the system as a whole is most sensitive to cytosolic conditions that may exert control over the entire import process.  相似文献   

3.
Assessment of free cytosolic [Ca2+] ([Ca2+]c) using the acetoxymethyl ester (AM) form of indo-1 may be compromised by loading of indo-1 into noncytosolic compartments, primarily mitochondria. To determine the fraction of noncytosolic fluorescence in whole hearts loaded with indo-1 AM, Mn2+ was used to quench cytosolic fluorescence. Residual (i.e., noncytosolic) fluorescence was subtracted from the total fluorescence before calculating [Ca2+]c. Noncytosolic fluorescence was used to estimate mitochondrial [Ca2+]. In hearts paced at 5 Hz (N = 17), noncytosolic fluorescence was 0.61 +/- 0.06 and 0.56 +/- 0.07 of total fluorescence at lambda 385 and lambda 456, respectively. After taking into account noncytosolic fluorescence, systolic and diastolic [Ca2+]c was 673 +/- 72 and 132 +/- 9 nM, respectively, noncytosolic [Ca2+] was 183 +/- 36 nM and increased to 272 +/- 12 when extracellular Ca2+ was increased from 2 to 6 mM. This increase in noncytosolic [Ca2+] was inhibited by ruthenium red, a blocker of Ca2+ uptake by mitochondria. We conclude that cytosolic and mitochondrial [Ca2+] can be determined in whole hearts loaded with indo-1 AM by using Mn2+ to quench cytosolic fluorescence.  相似文献   

4.
Null point titration techniques have been developed for measurements of cytosolic free Mg2+ in isolated cells and matrix free Mg2+ in isolated mitochondria using antipyrylazo III as a spectrophotometric Mg2+ indicator. A cytosolic free Mg2+ of 0.37 +/- 0.02 mM was obtained with hepatocytes. This represented about 6% of the total cytosolic magnesium content (activity coefficient of 5.8 X 10(-2). Nondiffusable Mg2+-binding sites in the cytosol were equal to 11.1 nmol/mg cell dry weight with an apparent dissociation constant of 0.71 mM and accounted for binding of 32% of the cytosolic magnesium. The null point method gave a value of 0.35 +/- 0.01 mM for the mitochondrial matrix free Mg2+ concentration (activity coefficient of 8.8 X 10(-3). Nondiffusable Mg2+ binding sites in the mitochondria were estimated at 25.7 nmol/mg mitochondrial protein with an apparent dissociation constant of 0.22 mM, compared with an apparent dissociation constant of 1.66 microM for bound calcium. These data demonstrate the absence of a significant gradient of free Mg2+ between the cytosolic and mitochondrial compartments. They also demonstrate a high ligand binding capacity for magnesium in both compartments with relatively low affinity resulting in a constant value for free Mg2+ when total cell magnesium is constant. This maintains a ratio between free Mg2+ and free Ca2+ of about 2000 in the cytosol and 100 in the mitochondria. The high concentration and low affinity of Mg2+ binding sites results in rather large changes of free Mg2+ with small variations in total cell magnesium. This is apparent in hepatocytes isolated from streptozotocin diabetic rats which had a decreased total magnesium content and a cytosolic free Mg2+ of 0.16 +/- 0.02 mM.  相似文献   

5.
Manganese superoxide dismutase (MnSOD) is one of the main antioxidant enzymes that protects the heart against ischemia-reperfusion (I/R) injury. Ischemic preconditioning (IPC) is a short period of ischemia-reperfusion that reduces subsequent prolonged I/R injury. Although MnSOD localizes in mitochondria, the immediate subcellular distribution of MnSOD in heart after IPC and I/R has not been studied. In a Langendorff mouse heart model, IPC significantly improved cardiac function and reduced the infarction size induced by I/R. Immunoblotting and double immunostaining in fresh preparations revealed that I/R resulted in an increase in cytosolic MnSOD content accompanied by the release of cytochrome c. In contrast, IPC increased mitochondrial MnSOD and reduced cytosolic MnSOD and cytochrome c release induced by I/R. We found that compared with freshly prepared fractions, the freeze-thaw approach results in mitochondrial integrity disruption and release of large amounts of MnSOD into the cytosol along with mitochondrial markers even in the absence of I/R. In contrast, fresh preparations exhibit early MnSOD release into the cytosol after I/R that is prevented by IPC and cyclosporin A administration.  相似文献   

6.
Lactate dehydrogenase in rat mitochondria   总被引:4,自引:0,他引:4  
Small but persistent amounts of L-lactate dehydrogenase (LDH) activity were found in mitochondrial preparations isolated from rat heart, kidney, liver, and lymphocytes. Brain mitochondrial preparations were also isolated, but the results were inconclusive. A variety of cytosolic markers were used and it was found that essentially no cytosolic contamination was present except in brain preparations. A bacterial protease was used along with digitonin fractionation to determine localization of the mitochondrial LDH. Approximately 80% of the LDH activity associated with heart and kidney mitochondrial preparations was on the inside compared to about 40% for liver. Lymphocyte mitochondrial LDH activity was about 70% on the inside. Cytosolic LDH-5 preferentially adheres to outer mitochondrial membrane of liver, kidney, and heart. Agarose gel electrophoresis showed LDH isozymes in mitochondria qualitatively similar to that of the corresponding cytosol except in kidney mitochondrial preparations, where a specific electrophoretic band was found which did not correspond to any of the common LDH isozymes.  相似文献   

7.
The transport of cytoplasmically synthesized mitochondrial proteins was investigated in whole cells of Neurospora crassa, using dual labelling and immunological techniques. In pulse and pulse-chase labelling experiments the mitochondrial proteins accumulate label. The appearance of label in mitochondrial protein shows a lag relative to total cellular protein, ribosomal, microsomal and cytosolic proteins. The delayed appearance of label was also found in immunoprecipitated mitochondrial matrix proteins, mitochondrial ribosomal proteins, mitochondrial carboxyatractyloside-binding protein and cytochrome c. Individual mitochondrial proteins exhibit different labelling kinetics. Cycloheximide inhibition of translation does not prevent import of proteins into the mitochondria. Mitochondrial matrix proteins labelled in pulse and pulse-chase experiments can first be detected in the cytosol fraction and subsequently in the mitochondria. The cytosol matrix proteins and those in the mitochondria show a precursor-product type relationship. The results suggest that newly synthesized mitochondrial proteins exist in an extra-mitochondrial pool from which they are imported into the mitochondria.  相似文献   

8.
Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17 degrees C hypothermic ischemia on cardiac cytosolic [Ca(2+)], mechanical and metabolic function, and infarct size, and 2) the potential role of K(ATP) channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca(2+)] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 +/- 2 (SE)% to 15 +/- 1% with IPC. Bracketing ischemic pulses with 200 microM 5-hydroxydecanoic acid or 10 microM glibenclamide increased infarct size to 28 +/- 3% and 26 +/- 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca(2+)] loading and enhanced ATP-sensitive K channel opening.  相似文献   

9.
《Free radical research》2013,47(10):1210-1217
Abstract

While ischemic preconditioning (IPC) and other cardioprotective interventions have been proposed to protect the heart from ischemia/reperfusion (I/R) injury by inhibiting mitochondrial complex I activity upon reperfusion, the exact mechanism underlying the modulation of complex I activity remains elusive. This study was aimed to test the hypothesis that IPC modulates complex I activity at reperfusion by activating mitochondrial Src tyrosine kinase, and induces cardioprotection against I/R injury. Isolated rat hearts were preconditioned by three cycles of 5-min ischemia and 5-min reperfusion prior to 30-min index ischemia followed by 2 h of reperfusion. Mitochondrial Src phosphorylation (Tyr416) was dramatically decreased during I/R, implying inactivation of Src tyrosine kinase by I/R. IPC increased mitochondrial Src phosphorylation upon reperfusion and this was inhibited by the selective Src tyrosine kinase inhibitor PP2. IPC's anti-infarct effect was inhibited by the selective Src tyrosine kinase inhibitor PP2. Complex I activity was significantly increased upon reperfusion, an effect that was prevented by IPC in a Src tyrosine kinase-dependent manner. In support, Src and phospho-Src were found in complex I. Furthermore, IPC prevented hypoxia/reoxygenation-induced mitochondrial reactive oxygen species (ROS) generation and cellular injury in rat cardiomyocytes, which was revoked by PP2. Finally, IPC reduced LDH release induced by both hypoxia/reoxygenation and simulated ischemia/reperfusion, an effect that was reversed by PP2 and Src siRNA. These data suggest that mitochondrial Src tyrosine kinase accounts for the inhibitory action of IPC on complex I and mitochondrial ROS generation, and thereby plays a role in the cardioprotective effect of IPC.  相似文献   

10.
Hexokinase is responsible for glucose phosphorylation, a process fundamental to regulating glucose uptake. In some tissues, hexokinase translocates to the mitochondria, thereby increasing its efficiency and decreasing its susceptibility to product inhibition. It may also decrease free radical formation in the mitochondria and prevent apoptosis. Whether hexokinase translocation occurs in the heart is controversial; here, using immunogold labeling for the first time, we provide evidence for this process. Rat hearts (6 groups, n = 6/group), perfused with either glucose- or glucose + oleate (0.4 mmol/l)-containing buffer, were exposed to 30-min insulin stimulation, ischemia, or control perfusion. Hexokinase I (HK I) and hexokinase II (HK II) distributions were then determined. In glucose-perfused hearts, HK I-mitochondrial binding increased from 0.41 +/- 0.04 golds/mm in control hearts to 0.71 +/- 0.10 golds/mm after insulin and to 1.54 +/- 0.38 golds/mm after ischemia (P < 0.05). Similarly, HK II-mitochondrial binding increased from 0.16 +/- 0.02 to 0.53 +/- 0.08 golds/mm with insulin and 0.44 +/- 0.07 golds/mm after ischemia (P < 0.05). Under basal conditions, the fraction of HK I that was mitochondrial bound was five times greater than for HK II; insulin and ischemia caused a fourfold increase in HK II binding but only a doubling in HK I binding. Oleate decreased hexokinase-mitochondrial binding and abolished insulin-mediated translocation of HK I. Our data show that mitochondrial-hexokinase binding increases under insulin or ischemic stimulation and that this translocation is modified by oleate. These events are isoform specific, suggesting that HK I and HK II are independently regulated and implying that they perform different roles in cardiac glucose regulation.  相似文献   

11.
Isolated working rat hearts were subjected to 20 min of global ischaemia and either 5 min or 15 min of reperfusion. The subcellular distribution of ATP, ADP, AMP, phosphocreatine and Pi were determined before and after ischaemia by the method of non-aqueous tissue fractionation. Ventricular function and the cytosolic, mitochondrial and ATPase-associated compartmentation of metabolites were measured. After 5 min of reperfusion, only 13 +/- 9% of the pre-ischaemic contractile function was restored compared to 67 +/- 8% after 15 min reperfusion. ATP was reduced in all cellular compartments after 5 min of reperfusion but was only decreased from pre-ischaemic values in the cytosolic compartment after 15 min of reperfusion (17.1 +/- 3.9 nmol/mg vs. 4.3 +/- 1.5 nmol/mg total protein; P less than 0.05). The mitochondrial [ATP]/[ADP] was reduced from a normal value of 4.36 to 1.79 after 5 min but recovered to 4.62 after 15 min of reperfusion. Most of the Pi was located in the mitochondria or with the ATPase fraction of the cell, with only 16% of the total Pi free in the cytosol. This study indicates that the capacity of the heart to recover function may be compromised during early reperfusion by a 59% increase in mitochondrial phosphate content and during late reperfusion by a reduced cytosolic/mitochondrial concentration ratio of both ATP (from 0.85 to 0.19) and phosphocreatine (from 3.9 to 1.24).  相似文献   

12.
We hypothesized that oxidative stress may contribute to the development of hypertrophy observed in mice with cardiac specific ablation of the insulin sensitive glucose transporter 4 gene (GLUT4, G4H(-/-) ). Measurements of oxidized glutathione (GSSG) in isolated mitochondria and whole heart homogenates were increased resulting in a lower ratio of reduced glutathione (GSH) to GSSG. Membrane translocation of the p67(phox) subunit of cardiac NADPH oxidase 2 (NOX2) was markedly increased in G4H(-/-) mice, suggesting elevated activity. To determine if oxidative stress was contributing to cardiac hypertrophy, 4-week-old control (Con) and G4H(-/-) mice were treated with either tempol (T, 1 mm, drinking water), a whole cell antioxidant, or Mn(III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP, 10 mg·kg(-1) , intraperitoneally), a mitochondrial targeted antioxidant, for 28 days. Tempol attenuated cardiac hypertrophy in G4H(-/-) mice (heart : tibia, Con 6.82 ± 0.35, G4H(-/-) 8.83 ± 0.34, Con + T 6.82 ± 0.46, G4H(-/-) + T 7.57 ± 0.3), without changing GSH : GSSG, glutathione peroxidase 4 or membrane translocation of the p67(phox) . Tempol did not modify phosphorylation of glycogen synthase kinase 3β or thioredoxin-2. In contrast, MnTBAP lowered mitochondrial GSSG and improved GSH : GSSG, but did not prevent hypertrophy, indicating that mitochondrial oxidative stress may not be critical for hypertrophy in this model. The ability of tempol to attenuate cardiac hypertrophy suggests that a cytosolic source of reactive oxygen species, probably NOX2, may contribute to the hypertrophic phenotype in G4H(-/-) mice.  相似文献   

13.
Diabetes mellitus (DM) has been reported to alter the cardiac response to ischemia–reperfusion (IR). In addition, cardioprotection induced by ischemic preconditioning (IPC) is often impaired in diabetes. We have previously shown that the subcellular localisation of the glycolytic enzyme hexokinase (HK) is causally related to IR injury and IPC protective potential. Especially the binding of HK to mitochondria and prevention of HK solubilisation (HK detachment from mitochondria) during ischemia confers cardioprotection. It is unknown whether diabetes affects HK localisation during IR and IPC as compared to non-diabetes. In this study we hypothesize that DM alters cellular trafficking of hexokinase in response to IR and IPC, possibly explaining the altered response to IR and IPC in diabetic heart. Control (CON) and type I diabetic (DM) rat hearts (65 mg/kg streptozotocin, 4 weeks) were isolated and perfused in Langendorff-mode and subjected to 35 min I and 30 min R with or without IPC (3 times 5 min I). Cytosolic and mitochondrial fractions were obtained at (1) baseline, i.e. after IPC but before I, (2) 35 min I, (3) 5 min R and (4) 30 min R. DM improved rate-pressure product recovery (RPP; 71 ± 10 % baseline (DM) versus 9 ± 1 % baseline (CON) and decreased contracture (end-diastolic pressure: 24 ± 8 mmHg (DM) vs 77 ± 4 mmHg (CON)) after IR as compared to control, and was associated with prevention of HK solubilisation at 35 min I. IPC improved cardiac function in CON but not in DM hearts. IPC in CON prevented HK solubilisation at 35 min I and at 5 min R, with a trend for increased mitochondrial HK. In contrast, the non-effective IPC in DM was associated with solubilisation of HK and decreased mitochondrial HK at early reperfusion and a reciprocal behaviour at late reperfusion. We conclude that type I DM significantly altered cellular HK translocation patterns in the heart in response to IR and IPC, possibly explaining altered response to IR and IPC in diabetes.  相似文献   

14.
The effect of thyroid-hormone application on cytosolic and mitochondrial ATP/ADP ratio was investigated in rat liver in vivo and in the isolated perfused organ. In vivo the ATP/ADP ratio in livers from hypothyroid rats was 0.84 +/- 0.08 in the mitochondrial matrix and 5.6 +/- 0.9 in the cytosol, as was observed in euthyroid controls. In contrast, hyperthyroidism was followed by a significant decrease in the mitochondrial and by an increase in the cytosolic ATP/ADP ratio (to 0.34 +/- 0.06 and 11.3 +/- 2.8 respectively). In the perfused liver from hypothyroid animals, addition of L-3,3',5-tri-iodothyronine in the perfusate also provoked, within 2 h, a significant decrease in the mitochondrial ATP/ADP ratio, whereas the cytosolic ratio was unaffected. From these and previous data in the isolated perfused liver and in isolated mitochondria from hypothyroid and tri-iodothyronine-treated rats it is concluded that thyroid hormones increase mitochondrial respiration and ATP regeneration, which is associated with an acceleration of mitochondrial adenine nucleotide transport and significant alterations in the mitochondrial and cytosolic ATP/ADP ratios.  相似文献   

15.
Stress-activated protein kinases may be essential to cardioprotection. We assessed the role of p38 in an in vivo rat model of ischemia-reperfusion. Ischemic preconditioning (IPC) and the delta(1)-opioid receptor agonist 2-methyl-4aalpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aalpha-octahydroquinolino [2,3,3-g]isoquinoline (TAN-67) significantly reduced infarct size (IS), expressed as a percentage of the area at risk (AAR), versus animals subjected only to 30 min of ischemia and 2 h of reperfusion (7.1 +/- 1.5 and 29.6 +/- 3.3 vs. 59.7 +/- 1.6%). The p38 antagonist SB-203580 attenuated IPC when it was administered before (34.0 +/- 6.9%) or after (25.0 +/- 3.8%) the IPC stimulus; however, it did not significantly attenuate TAN-67-induced cardioprotection (39.6 +/- 3.2). We also assessed the phosphorylation of p38 and c-jun NH(2)-terminal kinase (JNK) throughout ischemia-reperfusion in nuclear and cytosolic fractions. After either intervention, no increase was detected in the phosphorylation state of either enzyme in the nuclear fraction or for p38 in the cytosolic fraction versus control hearts. However, there was a robust increase in JNK activity in the cytosolic fraction immediately on reperfusion that was more pronounced in animals subjected to IPC or administered TAN-67. These data suggest that SB-203580 likely attenuates IPC via the inhibition of kinases other than p38, which may include JNK. The data also suggest that activation of JNK during early reperfusion may be an important component of cardioprotection.  相似文献   

16.
Glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6), which has been regarded as a cytosolic enzyme, was also found in rat liver mitochondria. The mitochondrial fraction contained about 10-15% of the total glyoxalase II activity in liver. The actual existence of the specific mitochondrial glyoxalase II was verified by showing that all of the activity of the crude mitochondrial pellet was still present in purified mitochondria prepared in a Ficoll gradient. Subfractionation of the mitochondria by digitonin treatment showed that 56% of the activity resided in the mitochondrial matrix and 19% in the intermembrane space. Partial purification of the enzyme (420-fold) was also achieved. Statistically significant differences were found in the substrate specificities of the mitochondrial and the cytosolic glyoxalase II. Electrophoresis and isoelectric focusing of either the crude mitochondrial extract or of the purified mitochondrial glyoxalase II resolved the enzyme activity into five forms with the respective pI values of 8.1, 7.5, 7.0, 6.85 and 6.6. Three of these forms (pI values 7.0-6.6) were exclusively mitochondrial, with no counterpart in the cytosol. The relative molecular mass of the partially purified enzyme, as estimated by Superose 12 gel chromatography, was 21,000. These results give evidence for the presence of mitochondrial glyoxalase II which is different from the cytosolic enzymes in several characteristics.  相似文献   

17.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   

18.
The mitochondria have been shown to play a key role in the initiation of caspase activation during apoptosis. Recently, some caspases have been shown to be associated with mitochondria. In this study, we used Jurkat T-lymphoblasts to show that caspases -2 and -3 are located in the mitochondrial intermembrane space, associated with the inner membrane. Caspase-9 is associated with the outer membrane and is exposed to the cytosolic compartment. Caspase activation took place predominantly in the cytosol in response to Fas ligation, but staurosporine treatment led to caspase activation in both cytosol and mitochondria. In response to both Fas and staurosporine treatment, caspase processing could be detected earlier in cytosol than in mitochondria, but this could reflect the limits of sensitive detection by immunoblotting. Only trace amounts of Apaf-1 were found in association with the mitochondria. However, staurosporine treatment led to preferential auto-processing of caspase-9 associated with mitochondria. These findings suggest that mitochondrial caspases are regulated independently of the cytosolic pool of caspases. The data are also consistent with the notion of a caspase nucleation site associated with mitochondria. Using a stable transfected CEM cell line, we show that Bcl-2 suppressed caspase processing in both cytosolic and mitochondrial compartments in response to both staurosporine and Fas ligation.  相似文献   

19.
Glucokinase is a hexokinase isoform with low affinity for glucose that has previously been identified as a cytosolic enzyme. A recent report claims that glucokinase physically associates with liver mitochondria to form a multi-protein complex that may be physiologically important in apoptotic signaling [N.N. Danial, C.F. Gramm, L. Scorrano, C.Y. Zhang, S. Krauss, A.M. Ranger, S.R. Datta, M.E. Greenberg, L.J. Licklider, B.B. Lowell, S.P. Gygi, S.J. Korsmeyer, Nature 424 (2003) 952-956]. Here, we re-examined the association of glucokinase with isolated mouse liver mitochondria. When glucokinase activity was measured by coupled enzyme assay, robust activity was present in whole liver homogenates and their 9500 g supernatants (cytosol), but activity in the purified mitochondrial fraction was below detection (<0.2% of homogenate). Furthermore, addition of 45 mM glucose in the presence of ATP did not increase mitochondrial respiration, indicating the absence of ADP formation by glucokinase or any other hexokinase isoform. Immunoblots of liver homogenates and cytosol revealed strong glucokinase bands, but no immunoreactivity was detected in mitochondria. In conclusion, mouse liver mitochondria lack measurable glucokinase. Thus, functional linkage of glucokinase to mitochondrial metabolism and apoptotic signaling is unlikely to be mediated by the physical association of glucokinase with mitochondria.  相似文献   

20.
Pharmacological opening of mitochondrial cardiac ATP-sensitive potassium (K(ATP)) channels has the chance to be a promising but still controversial cardioprotective mechanism. Physiological roles of mitochondrial K(ATP) channels in the myocardium remain unclear. We studied the effects of diazoxide, a specific opener of these channels, on the function of rat mitochondria in situ in saponin-permeabilized fibers using an ionic medium that mimics the cytosol. In the presence of NADH-producing substrates (malate + glutamate), neither 100 microm diazoxide nor 100 microm glibenclamide (a K(ATP) channel blocker) changed the mitochondrial respiration in the absence or presence of ADP. Because the K(ATP) channel function could be modified by changes in adenine nucleotide concentrations near the mitochondria, we studied the effects of diazoxide and glibenclamide on the functional activity of mitochondrial kinases. Both diazoxide and glibenclamide did not change the in situ ADP sensitivity in the presence or absence of creatine (apparent K(m) values for ADP were, respectively, 59 +/- 9 and 379 +/- 45 microm). Similarly, stimulation of the mitochondrial respiration with AMP in the presence of ATP due to adenylate kinase activity was not affected by the modulators of K(ATP) channels. However, when succinate was used as substrate, diazoxide significantly inhibited basal respiration by 22% and maximal respiration by 24%. Thus, at a cardioprotective dose, the main functional effect of diazoxide depends on respiratory substrates and seems not to be related to K(ATP) channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号