首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magnetic nanoparticles (Fe3O4) were synthesized by thermal co-precipitation of ferric and ferrous chlorides. The sizes and structure of the particles were characterized using transmission electron microscopy (TEM). The size of the particles was in the range between 9.7 and 56.4 nm. Cholesterol oxidase (CHO) was successfully bound to the particles via carbodiimide activation. FTIR spectroscopy was used to confirm the binding of CHO to the particles. The binding efficiency was between 98 and 100% irrespective of the amount of particles used. Kinetic studies of the free and bound CHO revealed that the stability and activity of the enzyme were significantly improved upon binding to the nanoparticles. Furthermore, the bound enzyme exhibited a better tolerance to pH, temperature and substrate concentration. The activation energy for free and bound CHO was 13.6 and 9.3 kJ/mol, respectively. This indicated that the energy barrier of CHO activity was reduced upon binding onto Fe3O4 nanoparticles. The improvements observed in activity, stability, and functionality of CHO resulted from structural and conformational changes of the bound enzyme. The study indicates that the stability and activity of CHO could be enhanced via attachment to magnetic nanoparticles and subsequently will contribute to better uses of this enzyme in various biological and clinical applications.  相似文献   

2.
Direct binding and characterization of lipase onto magnetic nanoparticles   总被引:4,自引:0,他引:4  
Lipase was covalently bound onto Fe(3)O(4) magnetic nanoparticles (12.7 nm) via carbodiimide activation. The Fe(3)O(4) magnetic nanoparticles were prepared by coprecipitating Fe(2+) and Fe(3+) ions in an ammonia solution and treating under hydrothermal conditions. The analyses of transmission electron microscopy (TEM) and X-ray diffraction (XRD) showed that the size and structure of magnetic nanoparticles had no significant changes after enzyme binding. Magnetic measurement revealed the resultant lipase-bound magnetic nanoparticles were superparamagnetic with a saturation magnetization of 61 emu/g (only slightly lower than that of the naked ones (64 emu/g)), a remanent magnetization of 1.0 emu/g, and a coercivity of 7.5 Oe. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of lipase onto magnetic nanoparticles. The binding efficiency of lipase was 100% when the weight ratio of lipase bound to Fe(3)O(4) nanoparticles was below 0.033. Compared to the free enzyme, the bound lipase exhibited a 1.41-fold enhanced activity, a 31-fold improved stability, and better tolerance to the variation of solution pH. For the hydrolysis of pNPP by bound lipase at pH 8, the activation energy within 20-35 degrees C was 6.4 kJ/mol, and the maximum specific activity and Michaelis constant at 25 degrees C were 1.07 micromol/min mg and 0.4 mM, respectively. It revealed that the available active sites of lipase and their affinity to substrate increased after being bound onto magnetic nanoparticles.  相似文献   

3.
Preparation and characterization of YADH-bound magnetic nanoparticles   总被引:17,自引:0,他引:17  
The covalently binding of yeast alcohol dehydrogenase (YADH) to magnetic nanoparticles via carbodiimide activation was studied. The magnetic nanoparticles Fe3O4 with a mean diameter of 10.6 nm were prepared by co-precipitating Fe2+ and Fe3+ ions in an ammonia solution and treating under hydrothermal conditions. Transmission electron microscopy (TEM) micrographs showed that the magnetic nanoparticles remained discrete and had no significant change in size after binding YADH. X-ray diffraction (XRD) patterns indicated both the magnetic nanoparticles before and after binding YADH were pure Fe3O4. Magnetic measurement revealed the resultant magnetic nanoparticles were superparamagnetic characteristics, and their saturation magnetization was reduced only slightly after enzyme binding. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of YADH to magnetic nanoparticles and suggested a possible binding mechanism. In addition, the measurement of protein content revealed that the maximum weight ratio of YADH bound to magnetic nanoparticles was 0.125, below which the binding efficiency of YADH was almost 100%. The kinetic measurements indicated the bound YADH retained 62% of its original activity and exhibited a 10-fold improved stability than did the free enzyme. The maximum specific activities and Michaelis constants were also determined.  相似文献   

4.
Glucose oxidase (GOD) and lactate dehydrogenase (LDH) were immobilized onto magnetic nanoparticles, viz. Fe3O4, via carbodiimide and glutaraldehyde. The immobilization efficiency was largely dependent upon the immobilization time and concentration of glutaraldehyde. The magnetic nanoparticles had a mean diameter of 9.3 nm and were superparamagnetic. The immobilization of GOD and LDH on the nanoparticles slightly decreased their saturation magnetization. However, the FT-IR spectra showed that GOD and LDH were immobilized onto the nanoparticles by different binding mechanisms, the reason for which was not well explained. The optimum pH values of the immobilized GOD and LDH were changed to 8 and 10, respectively. The free and immobilized enzyme kinetic parameters (Km and Vmax) were determined by Michaelis-Menten enzyme kinetics. The Km values for free and immobilized GOD were 0.168 and 0.324 mM, respectively, while those for free and immobilized LDH were 0.19 and 0.163 mM for NAD, and 2.976 and 4.785 mM for lactate, respectively. High operational stability was observed, with more than 80% of the initial enzyme activity being retained for the immobilized GOD up to 12 h and for the immobilized LDH up to 24 h. The immobilized GOD was applied to a sequential injection analysis system for the application of bioprocess monitoring.  相似文献   

5.
Magnetic nanobiocatalysts for tag cleavage on fusion proteins have been prepared by immobilizing enterokinase (EK) onto iron oxide magnetic nanoparticles coated with biopolymers. Two different chemistries have been explored for the covalent coupling of EK, namely carbodiimide (EDC coupling) and maleimide activation (Sulfo coupling). Upon immobilization, EK initial activity lowered but EDC coupling lead to higher activity retention. Regarding the stability of the nanobiocatalysts, these were recycled up to ten times with the greater activity losses observed in the first two cycles. The immobilized EK also proved to cleave a control fusion protein and to greatly simplify the separation of the enzyme from the reaction mixture.  相似文献   

6.
Silica-encapsulated magnetic nanoparticles (MNPs) were prepared via microemulsion method. The products were characterized by high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectrum (EDS). MNPs with no observed cytotoxic activity against human lung carcinoma cell and brine shrimp lethality were used as suitable support for glucose oxidase (GOD) immobilization. Binding of GOD onto the support was confirmed by the FTIR spectra. The amount of immobilized GODs was 95 mg/g. Storage stability study showed that the immobilized GOD retained 98% of its initial activity after 45 days and 90% of the activity was also remained after 12 repeated uses. Considerable enhancements in thermal stabilities were observed for the immobilized GOD at elevated temperatures up to 80°C and the activity of immobilized enzyme was less sensitive to pH changes in solution.  相似文献   

7.
Recombinant human β-mannosidase (rhMANB) is an important glycosidase enzyme that degrades mannose-linked glycoproteins and mannan polysaccharides. rhMANB was purified and covalently immobilized onto magnetic nanoparticles. The immobilization of the enzyme was confirmed by Fourier-transform infrared spectroscopy (FTIR) and magnetic nanoparticles linked immunosorbent assay (MagLISA). Antibodies against rhMANB were raised, purified and characterized for MagLISA. The binding of rhMANB onto magnetic nanoparticles was found to be 65%. The V( max ) and K( m ) of immobilized rhMANB was observed 3.0-fold higher and 2.024-fold lower, respectively, as compared to unbound rhMANB. The stability and activity of immobilized enzyme was observed at different pH, temperature, and after storage at 4°C. Metal chelators (oxalic acid, citric acid, and ascorbic acid) did not affect the enzyme activity of immobilized enzyme, whereas ethylenediamine tetraacetic acid reduced the activity. The results obtained from thin-layer chromatography indicate that immobilized rhMANB is more efficient than the unbound form to hydrolyze mannobiose, mannotriose, mannotetraose, mannopentose, galactoglucomannan, and locust bean gum. Magnetic nanoparticles suspended gel-permeation chromatography showed that 29% locust bean gum hydrolyzed efficiently during flow in the column. The immobilization of rhMANB will be a good process for gelling and saccharification of mannan polymers at industrial scale.  相似文献   

8.
Summary We report the novel use of magnetic particles isolated from magnetotactic bacteria. Magnetotactic bacteria were collected from enriched sludge by use of a magnetic harvesting apparatus. Magnetic particles separated from magnetotactic bacteria were shown to be pure magnetite. Glucose oxidase and uricase were immobilized on magnetic particles. The activity of glucose oxidase immobilized on biogenic magnetites was 40 times that immobilized on artificial magnetites or Zn-ferrite particles. Both glucose oxidase and uricase coupled with biogenic magnetic particles retained their activities when they were reused 5 times.  相似文献   

9.
Magnetic and gold coated magnetic nanoparticles were synthesized by co-precipitation of ferrous and ferric chlorides, and by the micromicelles method, respectively. Synthesized nanoparticles were functionalized to bear carboxyl and amino acid moieties and used as prion protein carriers after carbodiimide activation in the presence of N-hydroxysuccinimide. The binding of human recombinant prion protein (huPrPrec) to the surface of these nanoparticles was confirmed by FTIR and the size and structures of the particles were characterized by transmission electron microscopy. Findings indicate that the rate of prion binding increased only slightly when the concentration of prion in the reaction medium was increased. Rate constants of binding were very similar on Fe3O4@Au and Fe3O4-LAA when the concentrations of protein were 1, 2, 1.5, 2.25 and 3.57 μg/ml. For a 5 μg/ml concentration of huPrPrec the binding rate constant was higher for the Fe3O4-LAA particles. This study paves the way towards the formation of prion protein complexes onto a 3-dimensional structure that could reveal obscure physiological and pathological structure and prion protein kinetics.  相似文献   

10.
Magnetic nanoparticles prepared from an alkaline solution of divalent and trivalent iron ions could covalently bind protein via the activation ofN-ethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC). Trypsin and avidin were taken as the model proteins for the formation of protein-nanoparticle conjugates. The immobilized yield of protein increased with molar ratio of EDC/nanoparticle. Higher concentrations of added protein could yield higher immobilized protein densities on the particles. In contrast to EDC, the yields of protein immobilization via the activation of cyanamide were relatively lower. Nanoparticles bound with avidin could attach a single-stranded DNA through the avidin-biotin interaction and hybridize with a DNA probe. The DNA hybridization was confirmed by fluorescence microscopy observations. Immobilized DNA on nanoparticles by this technique may have widespread applicability to the detection of specific nucleic acid sequence and targeting of DNA to particular cells.  相似文献   

11.
A new aminated carrier—magnetic nanogels covered by amino groups, was obtained by Hoffman degradation of polyacrylamide-coated Fe3O4 nanoparticles prepared by photochemical polymerization. α-Chymotrypsin (CT) was covalently bound to the magnetic nanogels by use of 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide and N-hydroxysuccinimide at room temperature. Immobilization time, pH value of the reaction mixture and proportion of CT to the magnetic nanogels were investigated to obtain the optimum condition for CT immobilization. The maximal specific activity of the bound CT was determined to be 0.93 U/(mg min), 59.3% of free counterpart. The maximal binding capacity was measured to be 102 mg enzyme/g nanogel. Furthermore, the bound CT exhibited good thermal stability, storage stability and reusability.  相似文献   

12.
The covalently immobilized of Saccharomyces cerevisiae alcohol dehydrogenase (SCAD) to magnetic Fe(3)O(4) nanoparticles via glutaraldehyde coupling reaction was studied. The magnetic Fe(3)O(4) nanoparticles were prepared by hydrothermal method using H(2)O(2) as an oxidizer. Functionalization of surface-modified magnetic particles was performed by the covalent binding of chitosan onto the surface. The amino functional group on the magnetic Fe(3)O(4)-chitosan particles surface and the amino group of the dehydrogenase were coupled with glutaraldehyde. The immobilization process did not affect the size and structure of magnetic nanoparticles. For the reduction of phenylglyoxylic acid by immobilized SCAD, the kinetic analysis data indicated that the immobilized SCAD retained 48.77% activity of its original activity. The activation energy within 20-40 degrees C, the maximum specific activity and the Michaelis constants for phenylglyoxylic acid were 7.79 KJ mol(-1), 279.33 nmol min(-1) and 37.77 mmol l(-1), respectively. Furthermore, the immobilized SCAD enhanced thermal stability and good durability in the repeated use after recovered by magnetic separations.  相似文献   

13.
Abstract

Methods of cellulase immobilization on magnetic particles via glutaraldehyde binding were studied. The binding was confirmed by transmission electronic microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM). Samples analyzed by TEM and XRD showed that the magnetic particles with or without bound cellulase were all nanosized particles with a mean diameter of 11.5 nm, and the binding process did not cause significant changes in particle size and structure. Analysis by FTIR showed that the binding of cellulase to the magnetic nanoparticles might be via covalent bonding between residual amine groups on Fe3O4 nanoparticles and amine groups of the cellulase. The VSM analysis showed that magnetic nanoparticles with or without bound cellulase were all superparamagnetic. The immobilized cellulase had a wider pH and temperature range and improved storage stability compared with the free enzyme. Determination of the Michaelis constants revealed that the immobilized cellulase had a greater affinity for the cellulosic substrate than the free enzyme. The immobilized cellulase showed better performance on hydrolysis of steam-exploded corn stalks than of bleached sulfite bagasse pulp.  相似文献   

14.
We are reporting on a novel approach for structured immobilisation of enzymes on gold surfaces modified with monolayers of functionalised alkylthiols. The formation of enzyme spots is achieved by shooting very small volumes of an appropriate enzyme solution (down to 100 pl) onto a thiol-monolayer modified gold surface using a micro-dispenser. Formation of enzyme patterns is obtained by moving the micro-dispenser relative to the modified gold surface using a micro-positioning device. Enzyme spots with typical lateral dimensions of 100 μm are obtained, but also, more complex structures, e.g. lines or meander structures, can be achieved by multiple droplets dispensed during the concomitant movement of the micro-dispenser. The first enzyme layer on top of the functionalised thiol-monolayer is subsequently covalently immobilised using either carbodiimide activation of carboxilic headgroups at the enzyme or via already introduced activated ester functions at the monolayer. Immobilised enzyme activities of glucose oxidase and lactate oxidase patterns have been characterised by means of scanning electrochemical microscopy. The product of the enzyme-catalysed reaction, H2O2, is detected with an micro-electrode in the presence of either or both substrates, glucose and lactate, leading to a visualisation of the corresponding enzyme pattern and the lateral enzymatic activity.  相似文献   

15.
Polyarginine has been successfully bound onto iron oxide nanoparticles via carbodiimide activation as a highly positively charged magnetic nano-adsorbent for protein separation. They were nearly superparamagnetic with a mean diameter of 10.3 ± 2.36 nm, and the binding process did not change the spinel structure of iron oxide. From the analyses of FTIR spectra and zeta potential, the binding of polyarginine on the surface of iron oxide was confirmed and the resultant polyarginine-coated magnetic nanoparticles (PA-MNPs) were positively charged even up to pH 11. By thermogravimetric analysis, the typical product contained about 7.1 wt% of polyarginine. From the adsorption of the proteins with different pI values, the resultant PA-MNPs were found to be quite efficient for the fast and effective adsorption of acid proteins. For the typical acid protein, bovine serum albumin (BSA), the adsorption equilibrium was achieved within few minutes and obeyed the Langmuir isotherm equation. At pH 7 and 25 °C, the maximum adsorption capacity and equilibrium constant were 67.6 mg/g and 0.0623 L/mg, respectively. Moreover, by SDS–polyacrylamide gel electrophoresis, the capability of PA-MNPs for the separation of BSA-lysozyme mixture and egg white was further confirmed. Accordingly, the PA-MNPs were useful for the fast and effective magnetic recovery of acid proteins.  相似文献   

16.
Immobilization of pyranose oxidase (E.C.1.1.3.10) from Phanerochaete chrysosporium is described. The enzyme was bound to a glass-beaded support according to the glutardialdehyde, diazo, and carbodiimide methods with activity yields of 10%-23.3%. Characterization of the enzyme immobilized with the glutardialdehyde showed enhanced operational, storage, and temperature stability. The temperature optimum remained unchanged, but the pH optimum was slightly altered. Kinetic properties and the relative substrate specificities for glucose and xylose showed certain differences.  相似文献   

17.
Loading and activity assays of the enzymes alpha-chymotrypsin, alpha-chymotrypsinogen, and glucose oxidase covalently bound to an activated carbon support are presented. The activated carbon support material was pretreated using either a radio-frequency oxygen plasma or an electrochemical oxidation to maximize the enzyme attachment. Cyanuric chloride or water-soluble carbodiimide linking reactions were used to covalently attach the enzymes to the carbon support. Discussion of the relative merits of each reaction scheme is presented.  相似文献   

18.
Covalent immobilization of glucoamylase on the cellulose-based carrier Granocel was optimized by changing the anchor groups and the methods of activation/immobilization. Binding of the enzyme was via its primary amino groups. It was shown that using carbodiimide and divinyl sulfone for the activation of -COOH and -OH groups on the carrier resulted in the preparations with very low activity. A third method, using pentaethylenehexamine with glutaraldehyde, led to the attachment through a long spacer arm and to the preparations with the highest activity. Further optimization of the carrier's structure consisted of changing pore diameters and amount of functional groups on the carrier surface. The highest activity of bound glucoamylase was obtained by linking the protein via glutaraldehyde on NH(2)-Granocel having high pore size and high number of functional groups. The immobilized enzyme was stable throughout extended storage and possessed higher thermal stability.  相似文献   

19.
A general procedure for the high yield immobilization of enzymes with the help of specific anti-enzyme antibodies is described. Polyclonal antibodies were raised against Aspergillus niger glucose oxidase and horseradish peroxidase in rabbits and the gamma globulin (IgG) fraction from the immune sera isolated by ammonium sulphate fractionation followed by ion-exchange chromatography. Immobilization of glucose oxidase and horseradish peroxidase was achieved by initially binding the enzymes to a Sepharose matrix coupled with IgG isolated from anti-(glucose oxidase) and anti-(horseradish peroxidase) sera, respectively. This was followed by alternate incubation with the IgG and the enzyme to assemble layers of enzyme and antibody on the support. The immunoaffinity-layered preparations obtained thus were highly active and, after six binding cycles, the amount of enzyme immobilized could be raised about 25 times over that bound initially. It was also possible to assemble layers of glucose oxidase using unfractionated antiserum in place of the IgG. The bioaffinity-layered preparations of glucose oxidase and horseradish peroxidase exhibited good enzyme activities and improved resistance to heat-induced inactivation. The sensitivity of a flow injection analysis system for measuring glucose and hydrogen peroxide could be remarkably improved using immunoaffinity-layered glucose oxidase and horseradish peroxidase. For the detection of glucose, a Clark-type oxygen electrode, constructed as a small flow-through cell integrated with a cartridge bearing immunoaffinity-layered glucose oxidase was employed. The hydrogen peroxide concentration was analysed spectrophotometrically using a flow-through cell and the layered horseradish peroxidase packed into a cartridge. The immunoaffinity-layered enzymes could be conveniently solubilized at acid pH and fresh enzyme loaded onto the support. Immunoaffinity-layered glucose oxidase was successfully used for the on-line monitoring of the glucose concentration during the cultivation of Streptomyces cerevisiae. Received: 16 November 1998 / Received revision: 22 March 1999 / Accepted: 26 March 1999  相似文献   

20.
Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号