首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that DNA strand breaks are the molecular lesions responsible for radiation-induced lethality and that their repair is the basis for the recovery of irradiated cells from sublethal and potentially lethal damage. EM9 is a Chinese hamster ovary cell line that is hypersensitive to killing by X rays and has been reported to have a defect in the rate of rejoining of DNA single-strand breaks. To establish the importance of DNA strand-break repair in cellular recovery from sublethal and potentially lethal X-ray damage, those two parameters, recovery from sublethal and potentially lethal damage, were studied in EM9 cells as well as in EM9's parental repair-proficient strain, AA8. As previously reported, EM9 is the more radiosensitive cell line, having a D0 of 0.98 Gy compared to a D0 of 1.56 Gy for AA8 cells. DNA alkaline elution studies suggest that EM9 cells repair DNA single-strand breaks at a slower rate than AA8 cells. Neutral elution analysis suggests that EM9 cells also repair DNA double-strand breaks more slowly than AA8 cells. All of these data are consistent with the hypothesis that DNA strand-break ligation is defective in EM9 cells and that this defect accounts for increased radiosensitivity. The kinetics and magnitude of recovery from sublethal and potentially lethal damage, however, were similar for both EM9 and AA8 cells. Six-hour recovery ratios for sublethal damage repair were found to be 2.47 for AA8 cells and 1.31 for EM9 cells. Twenty-four-hour recovery ratios for potentially lethal damage repair were 3.2 for AA8 and 3.3 for EM9 cells. Both measurements were made at approximately equitoxic doses. Thus, the defect in EM9 cells that confers radiosensitivity and affects DNA strand-break rejoining does not affect sublethal damage repair or potentially lethal damage repair.  相似文献   

2.
Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving gamma-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation.  相似文献   

3.
Ku antigen is a heterodimer, comprised of 86- and 70-kDa subunits, which binds preferentially to free DNA ends. Ku is associated with a catalytic subunit of 450 kDa in the DNA-dependent protein kinase (DNA-PK), which plays a crucial role in DNA double-strand break (DSB) repair and V(D)J recombination of immunoglobulin and T-cell receptor genes. We now demonstrate that Ku86 (86-kDa subunit)-deficient Chinese hamster cell lines are hypersensitive to ICRF-193, a DNA topoisomerase II inhibitor that does not produce DSB in DNA. Mutant cells were blocked in G2 at drug doses which had no effect on wild-type cells. Moreover, bypass of this G2 block by caffeine revealed defective chromosome condensation in Ku86-deficient cells. The hypersensitivity of Ku86-deficient cells toward ICRF-193 was not due to impaired in vitro decatenation activity or altered levels of DNA topoisomerase IIα or -β. Rather, wild-type sensitivity was restored by transfection of a Ku86 expression plasmid into mutant cells. In contrast to cells deficient in the Ku86 subunit of DNA-PK, cells deficient in the catalytic subunit of the enzyme neither accumulated in G2/M nor displayed defective chromosome condensation at lower doses of ICRF-193 compared to wild-type cells. Our data suggests a novel role for Ku antigen in the G2 and M phases of the cell cycle, a role that is not related to its role in DNA-PK-dependent DNA repair.  相似文献   

4.
Pastor N  Cortés F 《DNA Repair》2003,2(12):1353-1360
The bufadienolide bufalin, a component of the Chinese medicine chan'su, has been reported to selectively inhibit the growth of various lines of human cancer cells, due at least in part to its specific effect on topoisomerase (topo) II. We have treated Chinese hamster ovary (CHO) cells with doses of bufalin that result in a dramatic reduction in both the level and catalytic activity of topo II without any concomitant induction of DNA damage, as assessed by the comet assay. When cells were pre-treated with bufalin and then irradiated with X-rays, a follow-up study revealed that the kinetics of DNA repair was clearly affected, with a general delay in the restoration of DNA to the situation observed in non-irradiated controls. The possible involvement of topo II in radiation damage repair is discussed.  相似文献   

5.
F Cortés  T Ortiz 《Mutation research》1991,246(1):221-226
EcoRI restriction endonuclease (RE), which produces cohesive-ended double-strand breaks (dsb) in DNA, was tested in the ethyl methanesulfonate- and X-ray-sensitive CHO mutant EM9 and its parental cell strain AA8 for its chromosomal aberration-inducing effect. The RE was efficiently introduced by electroporation into AA8 cells, while the mutant cells showed a very high sensitivity to electroporation, which consistently resulted in cell death. Nevertheless, the incubation of EM9 cells in the presence of EcoRI, without electroporation, was sufficient to induce about three times the chromosome damage observed in the electroporated parental cell line AA8 for any given dose of the RE.  相似文献   

6.
Antineoplastic bis(dioxopiperazine)s, such as meso-2,3-bis(2,6-dioxopiperazin-4-yl)butane (ICRF-193), are widely believed to be only catalytic inhibitors of topoisomerase II. However, topoisomerase inhibitors have little or no antineoplastic activity unless they are topoisomerase poisons, a special subclass of topoisomerase-targeting drugs that stabilize topoisomerase-DNA strand passing intermediates and thus cause the topoisomerase to become a cytotoxic DNA-damaging agent. Here we report that ICRF-193 is a very significant topoisomerase II poison. Detection of topoisomerase II poisoning by ICRF-193 required the use of a chaotropic protein denaturant in the topoisomerase poisoning assays. ICRF-193 caused dose-dependent cross-linking of human topoisomerase IIbeta to DNA and stimulated topoisomerase IIbeta-mediated DNA cleavage at specific sites on (32)P-end-labeled DNA. Human topoisomerase IIalpha-mediated DNA cleavage was stimulated to a lesser extent by ICRF-193. In vivo experiments with MCF-7 cells also showed the requirement of a chaotropic protein denaturant in the assays and selectivity for the beta-isozyme of human topoisomerase II. Studies with two topoisomerase IIbeta-negative cell model systems confirmed significant topoisomerase II poisoning by ICRF-193 in the wild type cells and were consistent with beta-isozyme selectivity. Common use of only the detergent, SDS, in assays may have led to failure to detect topoisomerase II poisoning by ICRF-193 in earlier studies.  相似文献   

7.
Due to the essential role played by DNA topoisomerases (topos) in cell survival, the use of topoisomerase inhibitors as chemotherapeutic drugs in combination with radiation has become a common strategy for the treatment of cancer. Catalytic inhibitors of these enzymes would be promising to improve the effectiveness of radiation and therefore, it appears reasonable to incorporate them in combined modality trials. In this work, we have investigated the capacity of both ICRF-193 and Aclarubicin (ACLA), two catalytic inhibitors of topoisomerase II (Topo II), to modulate radiation response in Chinese hamster V79 cell line and its radiosensitive mutant irs2. We also have explored potential mechanisms underlying these interactions. Experiments were performed in the presence and absence of either ICRF-193 or ACLA, and topo II activity was measured using an assay based upon decatenation of kinetoplast DNA (kDNA). For the combined experiments cells were incubated for 3 h in the presence of various inhibitor concentrations and irradiated 30 min prior to the end of treatments and cell survival was determined by clonogenic assay. DNA-damaging activity was measured by single-cell gel electrophoresis. Our results demonstrate that combinations of catalytic inhibitors of topo II and radiation produce an increase in cell killing induced by ionising radiation. The mechanism of radiation enhancement may involve a direct or indirect participation of topo II in the repair of radiation-induced DNA damage.  相似文献   

8.
DNA topoisomerase II is an essential nuclear enzyme for proliferation of eukaryotic cells and plays important roles in many aspects of DNA processes. In this report, we have demonstrated that the catalytic activity of topoisomerase IIalpha, as measured by decatenation of kinetoplast DNA and by relaxation of negatively supercoiled DNA, was stimulated approximately 2-3-fold by the tumor suppressor p53 protein. In order to determine the mechanism by which p53 activates the enzyme, the effects of p53 on the topoisomerase IIalpha-mediated DNA cleavage/religation equilibrium were assessed using the prototypical topoisomerase II poison, etoposide. p53 had no effect on the ability of the enzyme to make double-stranded DNA break and religate linear DNA, indicating that the stimulation of the enzyme catalytic activity by p53 was not due to alteration in the formation of covalent cleavable complexes formed between topoisomerase IIalpha and DNA. The effects of p53 on the catalytic inhibition of topoisomerase IIalpha were examined using a specific catalytic inhibitor, ICRF-193, which blocks the ATP hydrolysis step of the enzyme catalytic cycle. Clearly manifested in decatenation and relaxation assays, p53 reduced the catalytic inhibition of topoisomerase IIalpha by ICRF-193. ATP hydrolysis assays revealed that the ATPase activity of topoisomerase IIalpha was specifically enhanced by p53. Immunoprecipitation experiments revealed that p53 physically interacts with topoisomerase IIalpha to form molecular complexes without a double-stranded DNA intermediary in vitro. To investigate whether p53 stimulates the catalytic activity of topoisomerase II in vivo, we expressed wild-type and mutant p53 in Saos-2 osteosarcoma cells lacking functional p53. Wild-type, but not mutant, p53 stimulated topoisomerase II activity in nuclear extract from these transfected cells. Our data propose a new role for p53 to modulate the catalytic activity of topoisomerase IIalpha. Taken together, we suggest that the p53-mediated response of the cell cycle to DNA damage may involve activation of topoisomerase IIalpha.  相似文献   

9.
10.
The effect of ICRF-193, a noncleavable-complex-forming topoisomerase II inhibitor, on simian virus 40 (SV40) DNA and SV40 chromosome replication was examined by using an in vitro replication system composed of HeLa cell extracts and SV40 T antigen. Unlike the topoisomerase inhibitors VP-16 and camptothecin, ICRF-193 had little effect on DNA chain elongation during SV40 DNA replication, but high-molecular-weight DNAs instead of segregated monomer DNAs accumulated as major products. Analysis of the high-molecular-weight DNAs by two-dimensional gel electrophoresis revealed that they consisted of catenated dimers and late Cairns-type DNAs. Incubation of the replicated DNA with topoisomerase II resulted in conversion of the catenated dimers to monomer DNAs. These results indicate that ICRF-193 induces accumulation of catenated dimers and late Cairns-type DNAs by blocking the decatenating and relaxing activities of topoisomerase II in the late stage of SV40 DNA replication. In contrast, DNA replication of SV40 chromosomes was severely blocked by ICRF-193 at the late stage, and no catenated dimers were synthesized. These results are consistent with the finding that topoisomerase II is required for unwinding of the final duplex DNA in the late stage of SV40 chromosome replication in vitro.  相似文献   

11.
A number of clinically useful anticancer drugs, including etoposide (VP-16), target DNA topoisomerase (topo) II. These drugs, referred to as topo II poisons, stabilize cleavable complexes, thereby generating DNA double-strand breaks. Bis-2,6-dioxopiperazines such as ICRF-193 also inhibit topo II by inducing a distinct type of DNA damage, termed topo II clamps, which has been believed to be devoid of double-strand breaks. Despite the biological and clinical importance, the molecular mechanisms for the repair of topo II-mediated DNA damage remain largely unknown. Here, we perform genetic analyses using the chicken DT40 cell line to investigate how DNA lesions caused by topo II inhibitors are repaired. Notably, we show that LIG4-/- and KU70-/- cells, which are defective in nonhomologous DNA end-joining (NHEJ), are extremely sensitive to both VP-16 and ICRF-193. In contrast, RAD54-/- cells (defective in homologous recombination) are much less hypersensitive to VP-16 than the NHEJ mutants and, more importantly, are not hypersensitive to ICRF-193. Our results provide the first evidence that NHEJ is the predominant pathway for the repair of topo II-mediated DNA damage; that is, cleavable complexes and topo II clamps. The outstandingly increased cytotoxicity of topo II inhibitors in the absence of NHEJ suggests that simultaneous inhibition of topo II and NHEJ would provide a powerful protocol in cancer chemotherapy involving topo II inhibitors.  相似文献   

12.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclin-dependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.

Key Words:

Plant cyclin B2, Topoisomerase II, ICRF-193, G2 checkpoint, Microtubules  相似文献   

13.
The bis-dioxopiperazine ICRF-193 has long time been considered as a pure topoisomerase II catalytic inhibitor able to exert its inhibitory effect on the enzyme without stabilization of the so-called cleavable complex formed by DNA covalently bound to topoisomerase II. In recent years, however, this concept has been challenged, as a number of reports have shown that ICRF-193 really "poisons" the enzyme, most likely through a different mechanism from that shown by the classical topoisomerase II poisons used in cancer chemotherapy. In the present investigation, we have carried out a study of the capacity of ICRF-193 to induce DNA strand breaks, as classical poisons do, in cultured V79 and irs-2 Chinese hamster lung fibroblasts using the comet assay and pulsed-field gel electrophoresis (PFGE). Our results clearly show that ICRF-193 readily induces breakage in DNA through a mechanism as yet poorly understood.  相似文献   

14.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclindependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.  相似文献   

15.
An ATR-dependent G(2) checkpoint responds to inhibition of topoisomerase II and delays entry into mitosis by sustaining nuclear exclusion of cyclin B1-Cdk1 complexes. Here we report that induction of this checkpoint with ICRF-193, a topoisomerase II catalytic inhibitor that does not cause DNA damage, was associated with an ATR-dependent inhibition of polo-like kinase 1 (Plk1) kinase activity and a decrease in cyclin B1 phosphorylation. Expression of constitutively active Plk1 but not wild type Plk1 reversed ICRF-193-induced mitotic delay in HeLa cells, suggesting that Plk1 kinase activity is important for the checkpoint response to ICRF-193. G(2)/M synchronized normal human fibroblasts, when treated with ICRF-193, showed a decrease in cyclin B1 phosphorylation and Plk1 kinase activity despite high cyclin B1-Cdk1 kinase activity. G(2) fibroblasts that were treated with caffeine to override the checkpoint response to ICRF-193 displayed a high incidence of chromosomal aberrations. Taken together, these results suggest that ATR-dependent inhibition of Plk1 kinase activity may be one mechanism to regulate cyclin B1 phosphorylation and sustain nuclear exclusion during the G(2) checkpoint response to topoisomerase II inhibition. Moreover, the results demonstrate an important role for the topoisomerase II-dependent G(2) checkpoint in the preservation of human genomic stability.  相似文献   

16.
Shatrova A  Aksenov ND  Zenin VV 《Tsitologiia》2002,44(11):1068-1078
Studying the effect of topoisomerase II (topo II) inhibitors on cell passage through mitosis seems to be important for understanding the role of this enzyme during chromosome condensation and segregation. A flow cytometric assay (Zenin et al., 2001) allowed to determine the mitotic index, and to discriminate between not only cells in G2 and M phases (including metaphase and anaphase cells), but also cells in pseudo-G1 with 4c DNA content. It is shown that topo II catalytic inhibitor ICRF-193 blocks G2-M transition in a lymphoblastoid cell line GM-130. Addition of caffeine to cells abrogated a block of their entering mitosis but not the inhibitor action. Cells entered mitosis, which was proven by the presence of chromosomes in the examined specimen, and, bypassing anaphase, appeared in pseudo-G1 with 4c DNA content. We have found that in the presence of ICRF-193 cells, GM-130 and Hep-2 lines, previously blocked by nocodazole when in mitosis and then washed, pass through metaphase, enter anaphase and leave it to pass to pseudo-G1 with the 4c DNA content. Thus, by inhibiting topo II activity ICRF-193 causes abnormal mitotic transition.  相似文献   

17.
In this study we investigated the induction and rejoining of DNA single-strand breaks (SSBs) produced by H2O2 in the repair-deficient EM9 mutant Chinese hamster ovary (CHO) cell line. The effect of the poly(ADP-ribose)-transferase inhibitor 3-aminobenzamide (3-ABA) on SSB-rejoining and on cell killing was also evaluated. Results were compared with those obtained previously with the parent cell line (AA8). Cells were treated with H2O2 on ice for 1 h, after which they were either harvested or allowed to repair their damage at 37 degrees C either in the presence or absence of 3-ABA (5 mM). The cells were then assayed either for survival using a colony-forming assay or for their level of DNA SSBs using alkaline elution. EM9 cells were somewhat more sensitive than AA8 cells to the cytotoxic effects of H2O2. However, because the repair mutant showed slightly lower levels of DNA SSBs than did its parental cell line, this sensitivity could not be explained on the basis of alterations in initial damage. The rejoining of the H2O2-induced DNA SSBs followed exponential kinetics in both cell lines; however, EM9 cells rejoined these breaks at a slower rate (t1/2 of 10 min) than did AA8 cells (t1/2 of 5 min). The increased sensitivity of the EM9 cells therefore appears to correlate with a reduced ability to remove these lesions from their DNA. As previously demonstrated for the AA8 cells, 3-ABA treatment resulted in both a retardation of the removal of H2O2-induced DNA SSBs and potentiation of cytotoxicity in the EM9 cells. However, the degree of these effects were similar for both AA8 and EM9 cells. These data provide further evidence that the cytotoxic effects of low concentrations of H2O2 are mediated by damage to DNA, and suggest that the rate at which DNA SSBs are rejoined is important for cell survival.  相似文献   

18.
Topoisomerase II is an essential enzyme that is targeted by a number of clinically valuable anticancer drugs. One class referred to as topoisomerase II poisons works by increasing the cellular level of topoisomerase II-mediated DNA breaks, resulting in apoptosis. Another class of topoisomerase II-directed drugs, the bis-dioxopiperazines, stabilizes the conformation of the enzyme where it attains an inactive salt-stable closed clamp structure. Bis-dioxopiperazines, similar to topoisomerase II poisons, induce cell killing, but the underlying mechanism is presently unclear. In this study, we use three different biochemically well characterized human topoisomerase IIalpha mutant enzymes to dissect the catalytic requirements needed for the enzyme to cause dominant sensitivity in yeast to the bis-dioxopirazine ICRF-193 and the topoisomerase II poison m-AMSA. We find that the clamp-closing activity, the DNA cleavage activity, and even both activities together are insufficient for topoisomerase II to cause dominant sensitivity to ICRF-193 in yeast. Rather, the strand passage event per se is an absolute requirement, most probably because this involves a simultaneous interaction of the enzyme with two DNA segments. Furthermore, we show that the ability of human topoisomerase IIalpha to cause dominant sensitivity to m-AMSA in yeast does not depend on clamp closure or strand passage but is directly related to the capability of the enzyme to respond to m-AMSA with increased DNA cleavage complex formation.  相似文献   

19.
DNA-ligase activities appear normal in the CHO mutant EM9   总被引:6,自引:1,他引:5  
The Chinese hamster ovary (CHO) mutant strain EM9 was previously shown to be hypersensitive to killing by ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS), to have a 12-fold increased baseline incidence of sister-chromatid exchanges (SCE), and to be defective in rejoining DNA strand breaks after treatment with EMS, MMS, or X-rays. A study was performed to determine if the primary biochemical defect might be a DNA ligase. DNA-ligase activities were assayed and compared after separation of the multiple forms of ligase by AcA 34 gel-filtration chromatography of total cellular extracts. In EM9 cells the levels of the presumptive replicative forms, DNA ligase Ia (480 kd) and ligase Ib (240 kd) were about 50% and 60%, respectively, of those in the parental AA8 cells, whereas DNA ligase II (80 kd) was unaltered in EM9 . In a phenotypic revertant line ( 9R1 ) ligases Ia, Ib and II levels were 35%, 37% and 100%, respectively, of those in AA8 . The reduced levels of ligases Ia and Ib in EM9 and 9R1 cells are apparently not related directly to the mutant phenotype and may be attributable to the somewhat slower growth rates of these strains compared with those of AA8 . To determine if the repair defect in EM9 might reside in the ability to induce DNA-ligase activity after treatment with a DNA-damaging agent, AA8 and EM9 cells were treated with MMS at 30 micrograms/ml for 60 min before preparing fractions for ligase assays. Under these conditions the activities of ligases Ia and Ib decreases 70-80% in both cell lines, but ligase II increased 2.0- and 2.6-fold, respectively, in AA8 and EM9 . As a further test of defective ligase activities in EM9 , assays were performed in the presence of 0.1 M NaCl or after heating the fractions for 10 min at 50 degrees C. Although all 3 forms of ligase showed altered activity under both of these conditions, there were no significant differences between EM9 and AA8 cells. These data combined with the above results provide strong evidence that the site of the primary defect in EM9 is not in either of the DNA ligases .  相似文献   

20.
Mutations of the retinoblastoma tumor suppressor, pRb, or its cyclin-cyclin-dependent kinase (CDK) regulatory kinases or CDK inhibitors, allows unrestrained E2F activity, leading to unregulated cell cycle progression. However, overexpression of E2F-1 also sensitizes cells to apoptosis, suggesting that targeting this pathway may be of therapeutic benefit. Enforced expression of E2F-1 in interleukin-3-dependent myeloid cells led to preferential sensitivity to the topoisomerase II inhibitor, etoposide, which was independent of p53 accumulation. Pretreatment of the E2F-1-expressing cells with ICRF-193, a second topoisomerase II inhibitor that does not cause DNA damage, protected these cells against etoposide-induced apoptosis. However, ICRF-193 cooperated with other DNA-damaging agents to induce apoptosis. Enforced expression of E2F-1 led to accumulation of p53 protein. An E2F-1 mutant that is defective in inducing cell cycle progression also induced p53, suggesting that p53 was responding directly to E2F, and not to secondary events caused by inappropriate cell cycle progression (i.e., DNA damage). Thus, topoisomerase II inhibition and DNA damage cooperate to selectively induce apoptosis in cells that have mutations in the pRb pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号