首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Specificity of Membrane Binding of the Neuronal Protein NAP-22   总被引:3,自引:0,他引:3  
NAP-22, a major protein of neuronal rafts is known to preferentially bind to membranes containing cholesterol. In this work we establish the requirements for membrane binding of NAP-22. We find that other sterols can replace cholesterol to promote binding. In addition, bilayers containing phosphatidylethanolamine bind NAP-22 in the absence of cholesterol. Thus, there is not a specific interaction of NAP-22 with cholesterol that determines its binding to membranes. Addition of a mol fraction of phosphatidylserine of 0.05 to membranes of phosphatidylcholine and cholesterol enhances the membrane binding of NAP-22. The dependence of binding on the mol fraction of phosphatidylserine indicates that NAP-22 binds to membranes with its amino-terminal segment closer to the membrane than the remainder of the protein. We have also determined which segments of NAP-22 are required for membrane binding. A non-myristoylated form binds only weakly to membranes. Truncating the protein from 226 amino acids to the myristoylated amino-terminal 60 amino acids does not prevent binding to membranes in a cholesterol-dependent manner, but this binding is of weaker affinity. However, myristoylation is not sufficient to promote binding to cholesterol-rich domains. An N-terminal 19-amino-acid, myristoylated peptide binds to membranes but without requiring specific lipids. Thus, the remainder of the protein contributes to the lipid specificity of the membrane binding of NAP-22.  相似文献   

2.
Epand RM  Maekawa S  Yip CM  Epand RF 《Biochemistry》2001,40(35):10514-10521
A major protein of neuronal rafts, NAP-22, binds specifically to cholesterol. We demonstrate by circular dichroism that NAP-22 contains a significant amount of beta-structure that is not sensitive to binding of the protein to membranes, suggesting that a major portion of the protein does not insert deeply into the membrane. The free energy of binding of NAP-22 to liposomes of dioleoylphosphatidylcholine with 40% cholesterol is -7.3 +/- 0.5 kcal/mol. NAP-22 mixed with dipalmitoylphosphatidylcholine and 40% cholesterol partitions into the detergent insoluble fraction in the presence of 1% Triton X-100. NAP-22 also causes this insoluble fraction to become enriched in cholesterol relative to phospholipid, again demonstrating the ability of this protein to segregate cholesterol and phospholipids into domains. Differential scanning calorimetry results demonstrate that NAP-22 promotes domain formation in liposomes composed of cholesterol and phosphatidylcholine. This is shown by NAP-22-promoted changes in the shape and enthalpy of the phase transition of phosphatidylcholine as well as by the appearance of cholesterol crystallite transitions in membranes composed of phosphatidylcholine with either saturated or unsaturated acyl chains. In situ atomic force microscopy revealed a marked change in the surface morphology of a supported bilayer of dioleoylphosphatidylcholine with 0.4 mole fraction of cholesterol upon addition of NAP-22. Prior to the addition of the protein, the bilayer appears to be a molecularly smooth structure with uniform thickness. Addition of NAP-22 resulted in the rapid formation of localized raised bilayer domains. Remarkably, there was no gross disruption or erosion of the bilayer but rather simply an apparent rearrangement of the lipid bilayer structure due to the interaction of NAP-22 with the lipid. Our results demonstrate that NAP-22 can induce the formation of cholesterol-rich domains in membranes. This is likely to be relevant in neuronal membrane domains that are rich in NAP-22.  相似文献   

3.
Cholesterol forms crystals when the mol fraction of sterol in a membrane bilayer exceeds a certain value. The solubility limit of cholesterol is very dependent on the nature of the phospholipid with which it is mixed. NMR methods have proven useful in quantifying the amount of cholesterol monohydrate crystals present in mixtures with phospholipids. A protein, NAP-22, present in high abundance in the synaptic cell membrane and synaptic vesicle, promotes the formation of cholesterol crystallites in lipid mixtures in which cholesterol would be completely dissolved in the membrane in the absence of protein. This finding, along with effects of the protein on the phase transitions of mixtures of phosphatidylcholine (PC) and cholesterol indicate that NAP-22 facilitates the formation of cholesterol-rich domains. This protein will bind only to membranes of PC that contain either cholesterol or phosphatidylethanolamine (PE). The process requires the presence of a myristoyl group on the N-terminus of NAP-22. The phenomenon also does not occur with a 19 amino acid myristoylated peptide corresponding to the amino terminal segment of NAP-22. The basis of the selectivity of NAP-22 for interacting with membranes of specific composition is suggested to be due to the accessibility of the myristoyl group.  相似文献   

4.
We report here on an in situ atomic force microscopy study of the interaction of indolicidin, a tryptophan-rich antimicrobial peptide, with phase-segregated zwitterionic DOPC/DSPC supported planar bilayers. By varying the peptide concentration and bilayer composition through the inclusion of anionic lipids (DOPG or DSPG), we found that indolicidin interacts with these model membranes in one of two concentration-dependent manners. At low peptide concentrations, indolicidin forms an amorphous layer on the fluid domains when these domains contain anionic lipids. At high peptide concentrations, indolicidin appears to initiate a lowering of the gel-phase domains independent of the presence of an anionic lipid. Similar studies performed using membrane-raft mimetic bilayers comprising 30mol% cholesterol/1:1 DOPC/egg sphingomyelin revealed that indolicidin does not form a carpet-like layer on the zwitterionic DOPC domains at low peptide concentrations and does not induce membrane lowering of the liquid-ordered sphingomyelin/cholesterol-rich domains at high peptide concentration. Simultaneous AFM-confocal microscopy imaging did however reveal that indolicidin preferentially inserts into the fluid-phase DOPC domains. These data suggest that the indolicidin-membrane association is influenced greatly by specific electrostatic interactions, lipid fluidity, and peptide concentration. These insights provide a glimpse into the mechanism of the membrane selectivity of antibacterial peptides and suggest a powerful correlated approach for characterizing peptide-membrane interactions.  相似文献   

5.
The cholesterol-binding protein NAP-22 is a major component of the detergent-insoluble low-density fraction of rat brain. In this study, we found, using fluorescence microscopy, that native NAP-22, but not a demyristoylated form, binds to cholesterol-rich raft-like domains in planar-supported monolayers and remains bound after nonionic detergent extraction. NAP-22 also protects the cholesterol-rich domains during extraction by methyl-beta-cyclodextrin. The lateral mobility of this protein is much lower than that of other raft components in model membranes, suggesting that both cholesterol binding and inter-NAP-22 interactions markedly reduce its lateral diffusion. This study suggests that NAP-22 binding may be employed to image cholesterol-rich regions, such as caveolae/rafts, on the plasma membrane of cells, and preliminary efforts in that direction are presented.  相似文献   

6.
NAP-22, a myristoylated, anionic protein, is a major protein component of the detergent-insoluble fraction of neurons. After extraction from the membrane, it is readily soluble in water. NAP-22 will partition only into membranes with specific lipid compositions. The lipid specificity is not expected for a monomeric myristoylated protein. We have studied the self-association of NAP-22 in solution. Sedimentation velocity experiments indicated that the protein is largely associated. The low concentration limiting s value is approximately 1.3 S, indicating a highly asymmetric monomer. In contrast, a nonmyristoylated form of the protein shows no evidence of oligomerization by velocity sedimentation and has an s value corresponding to the smallest component of NAP-22, but without the presence of higher oligomers. Sedimentation equilibrium runs indicate that there is a rapidly reversible equilibrium between monomeric and oligomeric forms of the protein followed by a slower, more irreversible association into larger aggregates. In situ atomic force microscopy of the protein deposited on mica from freshly prepared dilute solution revealed dimers on the mica surface. The values of the association constants obtained from the sedimentation equilibrium data suggest that the weight concentration of the monomer exceeds that of the dimer below a total protein concentration of 0.04 mg/ml. Since the concentration of NAP-22 in the neurons of the developing brain is approximately 0.6 mg/ml, if the protein were in solution, it would be in oligomeric form and bind specifically to cholesterol-rich domains. We demonstrate, using fluorescence resonance energy transfer, that at low concentrations, NAP-22 labeled with Texas Red binds equally well to liposomes of phosphatidylcholine either with or without the addition of 40 mol% cholesterol. Thus, oligomerization of NAP-22 contributes to its lipid selectivity during membrane binding.  相似文献   

7.
The HA of influenza virus is a paradigm for a transmembrane protein thought to be associated with membrane-rafts, liquid-ordered like nanodomains of the plasma membrane enriched in cholesterol, glycosphingolipids, and saturated phospholipids. Due to their submicron size in cells, rafts can not be visualized directly and raft-association of HA was hitherto analyzed by indirect methods. In this study, we have used GUVs and GPMVs, showing liquid disordered and liquid ordered domains, to directly visualize partition of HA by fluorescence microscopy. We show that HA is exclusively (GUVs) or predominantly (GPMVs) present in the liquid disordered domain, regardless of whether authentic HA or domains containing its raft targeting signals were reconstituted into model membranes. The preferential partition of HA into ld domains and the difference between lo partition in GUV and GPMV are discussed with respect to differences in packaging of lipids in membranes of model systems and living cells suggesting that physical properties of lipid domains in biological membranes are tightly regulated by protein-lipid interactions.  相似文献   

8.
Laurdan and di-4-ANEPPDHQ are used as probes for membrane order, with a blue shift in emission for membranes in liquid-ordered (lo) phase relative to membranes in liquid-disordered (ld) phase. Their use as membrane order probes requires that their spectral shifts are unaffected by membrane proteins, which we have examined by using membrane inserting peptides and large unilamellar vesicles (LUVs). The transmembrane polypeptides, mastoparan and bovine prion protein-derived peptide (bPrPp), were added to LUVs of either lo or ld phase, up to 1:10 peptide/total lipid ratio. The excitation and emission spectra of laurdan and di-4-ANEPPDHQ in both lipid phases were unaltered by peptide addition. The integrity and size distribution of the LUVs upon addition of the polypeptides were determined by dynamic light scattering. The insertion efficiency of the polypeptides into LUVs was determined by measuring their secondary structure by circular dichroism. Mastoparan had an α-helical and bPrPp a β-strand conformation compatible with insertion into the lipid bilayer. Our results suggest that the presence of proteins in biological membranes does not influence the spectra of laurdan and di-4-ANEPPDHQ, supporting that the dyes are appropriate probes for assessing lipid order in cells.  相似文献   

9.
To comprehend the molecular processes that lead to the Fas death receptor clustering in lipid rafts, a 21-mer peptide corresponding to its single transmembrane domain (TMD) was reconstituted into mammalian raft model membranes composed of an unsaturated glycerophospholipid, sphingomyelin, and cholesterol. The peptide membrane lateral organization and dynamics, and its influence on membrane properties, were studied by steady-state and time-resolved fluorescence techniques and by attenuated total reflection Fourier transformed infrared spectroscopy. Our results show that Fas TMD is preferentially localized in liquid-disordered membrane regions and undergoes a strong reorganization as the membrane composition is changed toward the liquid-ordered phase. This results from the strong hydrophobic mismatch between the length of the peptide hydrophobic stretch and the hydrophobic thickness of liquid-ordered membranes. The stability of nonclustered Fas TMD in liquid-disordered domains suggests that its sequence may have a protective function against nonligand-induced Fas clustering in lipid rafts. It has been reported that ceramide induces Fas oligomerization in lipid rafts. Here, it is shown that neither Fas TMD membrane organization nor its conformation is affected by ceramide. These results are discussed within the framework of Fas membrane signaling events.  相似文献   

10.
We investigated if magic angle spinning (MAS) 1H NMR can be used as a tool for detection of liquid-ordered domains (rafts) in membranes. In experiments with the lipids SOPC, DOPC, DPPC, and cholesterol we demonstrated that 1H MAS NMR spectra of liquid-ordered domains (lo) are distinctly different from liquid-disordered (ld) and solid-ordered (so) membrane regions. At a MAS frequency of 10 kHz the methylene proton resonance of hydrocarbon chains in the ld phase has a linewidth of 50 Hz. The corresponding linewidth is 1 kHz for the lo phase and several kHz for the so phase. According to results of 1H NMR dipolar echo spectroscopy, the broadening of MAS resonances in the lo phase results from an increase in effective strength of intramolecular proton dipolar interactions between adjacent methylene groups, most likely because of a lower probability of gauche/trans isomerization in lo. In spectra recorded as a function of temperature, the onset of lo domain (raft) formation is seen as a sudden onset of line broadening. Formation of small domains yielded homogenously broadened resonance lines, whereas large lo domains (diameter >0.3 microm) in an ld environment resulted in superposition of the narrow resonances of the ld phase and the much broader resonances of lo. 1H MAS NMR may be applied to detection of rafts in cell membranes.  相似文献   

11.
Ceramide-induced alterations in the lateral organization of membrane proteins can be involved in several biological contexts, ranging from apoptosis to viral infections. In order to investigate such alterations in a simple model, we used a combined approach of atomic force microscopy, scanning fluorescence correlation spectroscopy and confocal fluorescence imaging to study the partitioning of different membrane components in sphingomyelin/dioleoyl-phosphatidylcholine/cholesterol/ceramide supported bilayers. Such model membranes exhibit coexistence of liquid-disordered, liquid-ordered (raft-like) and ceramide-rich lipid phases. Our results show that components with poor affinity toward the liquid-ordered phase, such as several fluorescent lipid analogues or the synaptic protein Synaptobrevin 2, are excluded from ceramide-rich domains. Conversely, we show for the first time that the raft-associated protein placental alkaline phosphatase (GPI-PLAP) and the ganglioside GM1 are enriched in such domains, while exhibiting a strong decrease in lateral diffusion. Analogue modulation of the local concentration and dynamics of membrane proteins/receptors by ceramide can be of crucial importance for the biological functions of cell membranes.  相似文献   

12.
We present an experimental study of the pore formation processes of small amphipathic peptides in model phosphocholine lipid membranes. We used atomic force microscopy to characterize the spatial organization and structure of alamethicin- and melittin-induced defects in lipid bilayer membranes and the influence of the peptide on local membrane properties. Alamethicin induced holes in gel DPPC membranes were directly visualized at different peptide concentrations. We found that the thermodynamic state of lipids in gel membranes can be influenced by the presence of alamethicin such that nanoscopic domains of fluid lipids form close to the peptide pores, and that the elastic constants of the membrane are altered in their vicinity. Melittin-induced holes were visualized in DPPC and DLPC membranes at room temperature in order to study the influence of the membrane state on the peptide induced hole formation. Also differential scanning calorimetry was used to investigate the effect of alamethicin on the lipid membrane phase behaviour.  相似文献   

13.
Epand RF  Sayer BG  Epand RM 《The FEBS journal》2005,272(7):1792-1803
The N-terminally myristoylated, 19-amino acid peptide, corresponding to the amino terminus of the neuronal protein NAP-22 (NAP-22 peptide) is a naturally occurring peptide that had been shown by fluorescence to cause the sequestering of a Bodipy-labeled PtdIns(4,5)P2 in a cholesterol-dependent manner. The present work, using differential scanning calorimetry (DSC), extends the observation that formation of a PtdIns(4,5)P2-rich domain is cholesterol dependent and shows that it also leads to the formation of a cholesterol-depleted domain. The PtdIns(4,5)P2 used in the present work is extracted from natural sources and does not contain any label and has the native acyl chain composition. Peptide-induced formation of a cholesterol-depleted domain is abolished when the sole aromatic amino acid, Tyr11 is replaced with a Leu. Despite this, the modified peptide can still sequester PtdIns(4,5)P2 into domains, probably because of the presence of a cluster of cationic residues in the peptide. Cholesterol and PtdIns(4,5)P2 also modulate the insertion of the peptide into the bilayer as revealed by 1H NOESY MAS/NMR. The intensity of cross peaks between the aromatic protons of the Tyr residue and the protons of the lipid indicate that in the presence of cholesterol there is a change in the nature of the interaction of the peptide with the membrane. These results have important implications for the mechanism by which NAP-22 affects actin reorganization in neurons.  相似文献   

14.
Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo.  相似文献   

15.
The purpose of this study was to generate the equivalent of a cholesterol/temperature phase map for a biological membrane using fluorescence spectroscopy. The pseudo-phase map was created using human erythrocytes treated with various concentrations of methyl-beta-cyclodextrin to remove defined amounts of cholesterol and a trio of fluorescent probes that assess different membrane properties (laurdan, diphenylhexatriene, and merocyanine 540). Parallel experiments with two-photon microscopy suggested that changes in cellular cholesterol content affected the entire membrane rather than being localized to specific macroscopic domains. The various regions of the composite erythrocyte pseudo-phase map were interpreted using analogous data acquired from multilamellar vesicles that served as simplified models of cholesterol-dependent phases. The vesicles consisted of various concentrations of cholesterol (0 to 50 mol%) with either palmitoyl sphingomyelin, 1:1 dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine, or phospholipid mixtures intended to simulate either the inner or outer leaflet of erythrocyte membranes. Four distinguishable regions were observed in sphingomyelin phase maps corresponding to the traditional solid-ordered and liquid-disordered phases and two types of liquid-ordered behavior. Physical properties were less diverse in the mixed phospholipid vesicles, as expected, based on previous studies. Erythrocytes displayed five regions of different combinations of membrane properties along the phase map. Some of the observations identified similarities between the cells and liquid-ordered behavior observed in the various types of liposomes as well as some interesting differences.  相似文献   

16.
Heterogeneities in cell membranes due to the ordering of lipids and proteins are thought to play an important role in enabling protein and lipid trafficking throughout the secretory pathway and in maintaining cell polarization. Protein-coated vesicles provide a major mechanism for intracellular transport of select cargo, which may be sorted into lipid microdomains; however, the mechanisms and physical constraints for lipid sorting by protein coats are relatively unexplored. We studied the influence of membrane-tethered protein coats on the sorting, morphology, and phase behavior of liquid-ordered lipid domains in a model system of giant unilamellar vesicles composed of dioleoylphosphatidylcholine, sphingomyelin, and cholesterol. We created protein-coated membranes by forming giant unilamellar vesicles containing a small amount of biotinylated lipid, thereby creating binding sites for streptavidin and avidin proteins in solution. We found that individual tethered proteins colocalize with the liquid-disordered phase, whereas ordered protein domains on the membrane surface colocalize with the liquid-ordered phase. These observations may be explained by considering the thermodynamics of this coupled system, which maximizes its entropy by cosegregating ordered protein and lipid domains. In addition, protein ordering inhibits lipid domain rearrangement and modifies the morphology and miscibility transition temperature of the membrane, most dramatically near the critical point in the membrane phase diagram. This observation suggests that liquid-ordered domains are stabilized by contact with ordered protein domains; it also hints at an approach to the stabilization of lipid microdomains by cross-linked protein clusters or ordered protein coats.  相似文献   

17.
T Y Wang  R Leventis  J R Silvius 《Biochemistry》2001,40(43):13031-13040
We have used a fluorescence assay and detergent fractionation to examine the partitioning of different fluorescent lipidated peptides, with sequences and lipid substituents matching those found in various classes of lipidated cellular proteins, into liquid-ordered (raft-like) domains in lipid bilayers. Peptides incorporating isoprenyl groups, or multiple unsaturated acyl chains, show negligible affinity for liquid-ordered domains in mixed-phase liquid-ordered/liquid-disordered (l(o)/l(d)) bilayers composed of dipalmitoylphosphatidylcholine, a spin-labeled unsaturated phosphatidylcholine, and cholesterol. By contrast, peptides incorporating multiple S- and/or N-acyl chains, or a cholesterol residue plus an N-terminal palmitoyl chain, show significant partitioning into liquid-ordered domains under the same conditions. Interestingly, the affinity of a lipidated peptide for l(o) domains can be strongly influenced, not only by the structures of the lipid substituents but also by the nature and the positions of their attachment to the peptide chain. These results are well correlated with those obtained from parallel assays based on low-temperature detergent fractionation. Using the latter approach, we further demonstrate that a truly minimal l(o) domain partitioning motif [myristoylGlyCys(palmitoyl)-] can mediate efficient incorporation into the "raft" fraction of COS-7 cell membranes.  相似文献   

18.
We have studied the dependence of the phase and domain characteristics of sphingomyelin (SM)/cholesterol model membranes on sterol content and temperature using deuterium nuclear magnetic resonance. NMR spectra of N-palmitoyl(D31)-D-erythro-sphingosylphosphorylcholine (PSM-d31) were taken for temperatures from 25 to 70°C and cholesterol concentrations of 0–40%. Analogous experiments were performed using 1-palmitoyl,2-palmitoyl(D31)-sn-glycero-3-phosphocholine (DPPC-d31)/cholesterol membranes to carefully compare the data obtained using palmitoyl chains that have similar “kinked” conformations. The constructed phase diagrams exhibit both solid-ordered (so) + liquid-ordered (lo) and liquid-disordered (ld) + lo phase-coexistence regions with a clear three-phase line. Macroscopic (micron-sized) coexistence of ld and lo phases was not observed; instead, line-broadening in the ld+lo region was characterized by intermediate exchange of lipids between the two types of domains. The length scales associated with the domains were estimated to be 75–150 nm for PSM-d31/cholesterol and DPPC-d31/cholesterol model membranes.  相似文献   

19.
The concept of lipid rafts and the intense work toward their characterization in biological membranes has spurred a renewed interest in the understanding of domain formation, particularly in the case of cholesterol-containing membranes. The thermodynamic principles underlying formation of domains, rafts, or cholesterol/phospholipid complexes are reviewed here, along with recent work in model and biological membranes. A major motivation for this review was to present those concepts in a way appropriate for the broad readership that has been drawn to the field. Evidence from a number of different techniques points to the conclusion that lipid-lipid interactions are generally weak; therefore, in most cases, massive phase separations are not to be expected in membranes. On the contrary, small, dynamic lipid domains, possibly stabilized by proteins are the most likely outcome. The results on mixed lipid bilayers are used to discuss recent experiments in biological membranes. The clear indication is that proteins partition preferentially into fluid, disordered lipid domains, which is contrary to their localization in ordered, cholesterol/sphingomyelin rafts inferred from detergent extraction experiments on cell membranes. Globally, the evidence appears most consistent with a membrane model in which the majority of the lipid is in a liquid-ordered phase, with dispersed, small, liquid-disordered domains, where most proteins reside. Co-clustering of proteins and their concentration in some membrane areas may occur because of similar preferences for a particular domain but also because of simultaneous exclusion from other lipid phases. Specialized structures, such as caveolae, which contain high concentrations of cholesterol and caveolin are not necessarily similar to bulk liquid-ordered phase.  相似文献   

20.
Fastenberg ME  Shogomori H  Xu X  Brown DA  London E 《Biochemistry》2003,42(42):12376-12390
Sphingolipid/cholesterol-rich rafts are membrane domains thought to exist in the liquid-ordered state. To understand the rules governing the association of proteins with rafts, the behavior of a model membrane-inserted hydrophobic polypeptide (LW peptide, acetyl-K(2)W(2)L(8)AL(8)W(2)K(2)-amide) was examined. The distribution of LW peptide between coexisting ordered and disordered lipid domains was probed by measuring the amount of LW Trp fluorescence quenched by a nitroxide-labeled phospholipid that concentrated in disordered lipid domains. Strong quenching of the Trp fluorescence (relative to quenching in model membranes lacking domains) showed that LW peptide was concentrated in quencher-rich disordered domains and was largely excluded from ordered domains. Exclusion of LW peptide from the ordered domains was observed both in the absence and in the presence of 25-33 mol % cholesterol, indicating that the peptide is relatively excluded both from gel-state domains (which form in the absence of cholesterol) and from liquid-ordered-state domains (which form at high cholesterol concentrations). Because exclusion was also observed when ordered domains contained sphingomyelin in place of DPPC, or ergosterol in place of cholesterol, it appeared that this behavior was not strongly dependent on lipid structure. In both the absence and the presence of 25 mol % cholesterol, exclusion was also not strongly dependent upon the fraction of the bilayer in the form of ordered domains. To evaluate LW peptide behavior in more detail, an analysis of the effects of domain size and edges upon quenching was formulated. This analysis showed that quenching can be affected both by domain size and by whether a fluorescent molecule localized at domain edges. Its application to the quenching of LW peptide indicated that the peptide did not preferentially reside at the boundaries between ordered and disordered domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号