首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compared the effects of interference competition in habitats of different complexity and in different densities. The influence of fish density and habitat structure was examined in manipulative experiments using young-of-the-year white spotted charr Salvelinus leucomaenis as a model species. The difference of specific growth rate ( G ) range, an index of interference competitive intensity, was significantly smaller in the structurally complex treatments than structurally simple treatments, while there were no significant difference between high-density and low-density treatments. Thus, physical habitat structure was more effective for mitigating interference competition than manipulating competitor density. Although interference competition was not affected by competitor density, mean G were suppressed in the high-density treatments. This implied that exploitative competition may cause the decrease of G rather than interference competition does in the high-density treatments. Mean G were also suppressed in the structurally complex treatments. Chaotic flow pattern created by physical habitat structures may decrease G by reducing foraging success of experimental fish in the complex treatments.  相似文献   

2.
To examine density dependence in the survival, growth, and reproduction of Pomacea canaliculata, we conducted an experiment in which snail densities were manipulated in a paddy field. We released paint-marked snails of 15–20 mm shell height into 12 enclosures (pens) of 16 m2 at one of five densities – 8, 16, 32, 64, or 128 snails per pen. The survival rate of released snails was 95% and was independent of snail density. The snail density had a significant effect on the growth and egg production of individual snails. This density dependence may have been caused by reduced food availability. The females at high density deposited fewer and smaller egg masses than those at low density, and consequently produced fewer eggs. The females at densities 8 and 16 deposited more than 3000 eggs per female, while the females at density 128 oviposited only 414 eggs. The total egg production per pen was, however, higher at higher snail density. The survival rates of juvenile snails were 21%–37% and were independent of adult density. The juvenile density was positively correlated with the total egg production per pen and hence was higher at higher adult density. However, the density of juveniles larger than 5 mm in shell height, i.e., juveniles that can survive an overwintering period, was not significantly different among density treatments. These results suggest that snail density after the overwintering period is independent of the density in the previous year. Thus, density dependence in growth and reproduction might regulate the population of P. canaliculata in paddies. Received: October 23, 1998 / Accepted: July 16, 1999  相似文献   

3.
Summary Densities of the cladoceran, Holopedium gibberum, were manipulated in 18 enclosures containing juvenile (age 0+) yellow perch (Perca flavescens) and mean-lake densities of other zooplankton. In enclosures, where nearlake densities of all zooplankton species including Holopedium were maintained, young-of-the-year perch grew significantly heavier and longer than in experimental enclosures where Holopedium was excluded. Holopedium comprised between 15–45% of the diet (wet weight) of perch in the first 2 weeks of July in the control treatment (Holopedium at or near ambient lake densities) and only 3–7% of total biomass ingested in the experimental treatment (Holopedium density selectively reduced). Predation on Holopedium decreased dramatically after the 2nd week of July in the control treatment after which Chaoborus, chironomids, and Sida became dominant prey items (by weight) of juvenile perch. These findings suggest that growth and survivorship of age 0+ perch in Precambrian Shield lakes may be coupled to Holopedium abundance. Thus, utilization of Holopedium by young-of-the-year yellow perch may affect recruitment of this species since overwintering survivorship, range of accessible prey sizes or species, and vulnerability of juvenile perch to predation by larger fish depend on body size, which is reduced when Holopedium is excluded from the diet.  相似文献   

4.
Fauvet  Guillaume  Claret  Cécile  Marmonier  Pierre 《Hydrobiologia》2001,464(1-3):121-131
An enclosure study was conducted in Ranger Lake in south-central Ontario, Canada from 4 July to 5 August 1997 to determine predation effects of the larvae of the phantom midge fly Chaoboruson the zooplankton community. Zooplankton assemblages were established in 12 enclosures (2 m in diameter, 7.5 m deep). Three densities of fourth-instar Chaoborus trivittatus (0 l–1, 0.1 l–1 and 0.5 l–1) were introduced as predator treatments to the enclosures. Temperature, dissolved oxygen and zooplankton community composition were monitored for six weeks. To determine if the zooplankton community composition changed, a repeated measures multivariate analysis was performed on percent biomass of Bosmina and calanoid copepods. There were no significant differences in mean taxon percent biomass among predator treatments. There were significant differences in mean taxon percent biomass between water layers (epilimnion and metalimnion). There were also significant differences in lengths of Bosmina and calanoid copepods among predator treatments at the end of the experiment. Crop content analysis of C. trivittatusshowed that Bosmina constituted 88–98% of the prey items found in the crops. These results demonstrate that the use of deep enclosures, a Chaoborus species which vertically migrates, and lower natural densities of Chaoborus may provide prey with an important natural refuge from predation and so allow a more accurate determination of the predation impact of Chaoborus trivittatusin temperate lakes where fish control Chaoborus densities.  相似文献   

5.
Abstract 1. Predators can affect prey directly by reducing prey abundance and indirectly by altering behavioural patterns of prey. From previous studies, there is little evidence that ant community structure is affected by vertebrate predation. 2. Researchers tend to consider the interactions between vertebrate predators and ants to be weak. The present study examined the impact of the exotic invasive lizard, Anolis sagrei, on the ant community structure by manipulating the density of lizards within enclosures. The natural density of A. sagrei in the field was surveyed and used as the stocking density rate in the lizard‐present sub‐enclosures. 3. Before the lizard density was manipulated, there was no difference in the ant diversity between sub‐enclosures. After the lizard density manipulation, the ant diversity in sub‐enclosures with A. sagrei present was significantly different from that of enclosures where the lizards were absent, although the overall ant abundance did not differ significantly. 4. The ant diversity difference was generated by a significant reduction of the ant species Pheidole fervens in sub‐enclosures with A. sagrei present. Such an abundance change might be the result of direct predation by the lizards, or it might be generated by a foraging site shift by this ant. 5. The results of this study thus demonstrated that the invasion of an exotic vertebrate can significantly alter the community structure of ants, perhaps through the combined direct and indirect effects of lizards on ants.  相似文献   

6.
Spiller DA  Schoener TW 《Oecologia》1990,83(2):150-161
Summary To determine the effect of lizards on webspider populations, we conducted a long-term field experiment in the Bahamas. Numbers of spider individuals were about 3 times higher in lizard-removal enclosures than in control enclosures with natural densities of lizards. Dietary analyses showed that lizards ate spiders and that lizard and spider diets overlapped substantially. Lizards reduced biomass of prey consumed by spiders; details indicated that they reduced biomass of large (> 4 mm) prey consumed by spiders more than biomass of small (4 mm) prey. Similarly, lizards reduced biomass of large aerial arthropods caught in sticky traps but not biomass of small aerial arthropods. We found no evidence that the lizard effect on prey consumption by spiders was caused by a spatial shift from areas with high aerial arthropod abundance to areas with low aerial arthropod abundance. Lizards reduced adult female cephalothorax width and fecundity of spiders. In a separate experiment, food-supplemented spiders were more fecund than control spiders. This study indicates that the interaction between lizards and spiders includes both predation and competition for food.  相似文献   

7.
Downes S  Hoefer AM 《Oecologia》2007,153(3):775-785
We examined how a weed affected the basking and activity of a diurnal lizard, and the potential cascading effects of these shifts for life history strategies and expression of morphology. Hatchlings of the diurnal lizard Lampropholis delicata were raised to maturity in outdoor enclosures that mimicked high, moderate and low invasion by a sprawling plant (blue periwinkle, Vinca major). Skinks depend on sunlight for growth and maintenance. Periwinkle differs from displaced grassland by being structurally complex and blocking sunlight. Lizards restricted to the enclosure floor achieved preferred body temperatures only when exposure to periwinkle was moderate or low. However, lizards in high invasion enclosures could reach preferred body temperatures by climbing plants and basking on exposed canopy. This shift in basking strategy resulted in lizards growing longer hind limbs compared with animals that rarely (moderate invasion) and never (low invasion) climbed plants. Consequently, lizards reared in high invasion enclosures sprinted faster than conspecifics reared in lower invasion environments. Throughout the study there was no significant variation among treatments in the tendency of animals to be moving when they were not hidden. However, lizards in high invasion treatments hid more often during the day, were lighter in body mass, and females had lighter clutch masses and offspring than did those from moderate and low invasion enclosures. Thus, microhabitat degradation can drive a cascade of changes to an animal’s ecology.  相似文献   

8.
Summary The population densities of sympatric Atlantic salmon,Salmo salar and brook charr,Salvelinus fontinalis, were measured in riffle and pool stream habitats to test whether non-linear isodars, a multispecific model of habitat selection based on ideal distribution assumptions, could (1) predict the distribution of densities between habitats and (2) reproduce the processes postulated to underlie spatial segregation and species interactions in previous laboratory and field studies. The model provided a good fit to observed density patterns and indicated that habitat suitability declined non-linearly with increased heterospecific competitor densities. Competitive effects in riffles appeared to be due to exploitative resource use, with salmon always emerging as the superior competitor. No evidence was found for interference competition in riffles. In contrast, interspecific competition in pools seemed to occur through exploitation and interference. The specific identity of the superior competitor in pools depended on the density of both species; pools provided the charr with refuge from competition with the salmon, presumably through the adoption by the charr of density-dependent behaviours, such as schooling and group foraging, that mitigated the negative impact of the salmon. Charr were displaced from the riffles toward the pools as the total salmon density increased. The isodar analysis, based on limited density data, successfully reproduced the processes suggested to underlie spatial segregation in previous field and laboratory studies and provided new insights into how changes in competitor densities modify habitat suitability in this system.  相似文献   

9.
Christine L. Dalton 《Oikos》2000,90(1):153-159
I conducted an experiment with gray-tailed voles, Microtus canicaudus , to test the hypothesis proposed by Charnov and Finerty that populations of voles comprised of female kin groups would grow more rapidly and reach higher densities more quickly than populations in which female kin groups were disrupted. The experiment was conducted in 0.2-ha semi-natural enclosures planted with mixed grasses. In four enclosures, females were unmanipulated (control) and in four enclosures all newly caught females were removed from their natal enclosures and replaced with females of comparable age from another enclosure, such that juvenile females did not settle near their siblings or parents (treatment). I found no significant differences in survival, reproduction, juvenile recruitment, population growth rates, or population size between control and treatment populations. The only difference was the time to sexual maturation for young females, which was 3.1 weeks for control enclosures compared with 4.2 weeks for treatment enclosures. I could not measure reproductive success for individual females, but my results did not support the hypothesis that the presence or absence of kin groups resulted in any biologically meaningful population-level effects. Female voles that have nesting territories adjacent to relatives may accrue some individual benefits, but these benefits are unlikely to contribute to population regulation in gray-tailed voles.  相似文献   

10.
In territorial microtines intra-specific density dependent processes can limit the maturation of individuals during the summer of their birth. This may have demographic consequences by affecting the number and the age distribution of breeding individuals in the population. Little is known about this process on a community level, though populations of many northern microtine species fluctuate in synchrony and are known to interfere socially with each other. We experimentally studied the influence of the field vole Microtus agrestis on maturation, breeding, space use and survival of weanling bank voles, Clethrionomys glareolus. Two additive competition experiments on bank vole populations were conducted in large outdoor enclosures, half of them additionally housing a field vole population. In a mid-summer experiment low population density and absence of older breeding females minimised intra-specific competition. Survival was not affected by the presence of field voles. Season had a significant effect on both the probability of maturation and breeding of the weanlings. Competition with field voles significantly delayed breeding, and coupled with seasonal effects decreased the probability of breeding. In a late-summer experiment breeding and survival of bank vole weanlings were studied for three weeks as part of a high density breeding bank vole population. Weanlings did not mature at all nor were their space use and survival affected by the presence of field voles. Our results show that competition with other species can also have an impact on breeding of immatures. In an extreme seasonal environment, even a short delay of breeding may decrease survival chances of offspring. Seasonal and competition effects together may thus limit the contribution of year born females to reproductive output of the population. Other studies have shown that adult breeding bank voles suffer lower survival in the presence of field voles, but this study showed no survival effects on the weanlings. Thus it might be beneficial for weanlings to stay immature especially in the end of the breeding season and postpone reproduction to the next breeding season if densities of competing species are high.  相似文献   

11.
Trophic cascades are predicted to occur when the abundance of predators is increased, directly reducing the abundance of the intermediate prey and indirectly increasing the abundance of the prey at the base of a food web. Mixed trophic impact analysis of a network model developed for Apalachee Bay, near St. Marks, FL, USA predicted such a trophic cascade, in that increased abundance of juvenile gulf flounder Paralichthys albigutta ( = 149 mm SL, effective trophic level 3.9) should have a negative impact on juvenile spot Leiostomus xanthurus ( = 30 mm SL, effective trophic level 2.9) and a positive impact on benthic polychaetes (effective trophic levels 2.3 for deposit feeders and 3.0 for predatory polychaetes) in Halodule wrightii seagrass beds. We tested the predictions of the mixed trophic impact analysis by manipulating the abundance of the high trophic-level species (juvenile gulf flounder) in a cage-exclusion study in the North River, near Harkers Island, NC, USA. We compared the polychaete communities in St. Marks, FL and Harkers Island, NC, and showed that they are 51% similar (Jaccard's Index) at the family level, with the same eight dominant families (Nereidae, Capitellidae, Syllidae, Spionidae, Cirratulidae, Terebellidae, Sabellidae, and Maldanidae) present in both locations. We used 24 open-bottom cages to enclose the benthos and its seagrass-associated animal communities. We manipulated each cage by assigning it to one of the following treatments: (1) inclusion of fishes in upper and intermediate trophic levels (1 juvenile gulf flounder and 10 juvenile spot, the flounder + spot treatment); (2) inclusion of the intermediate predator (10 juvenile spot with no gulf flounder, the spot-only treatment); and (3) no fish added (unmanipulated controls). Core samples taken within the cages provided pre- and post-experimental measures of polychaete density and biomass, and the difference in density and biomass were used as response variables. At the end of the experiment, we collected, weighed, and analyzed the gut contents of all juvenile spot present in the cages. Juvenile pinfish (Lagodon rhomboides,  = 30 mm SL) were present at the end of the study, having arrived as larvae or being trapped during cage set-up, and these fish were also examined, because they also eat polychaetes and their natural densities exceeded our introduced spot densities. Significant differences among treatments were detected for the polychaete family Terebellidae for both the change in density and biomass (pre-experiment − post-experiment). Densities of the Terebellidae changed in the direction predicted by the network model's impact analysis, declining in the cages with spot added compared with the control cages. Analyses of the other response variables (post-experiment spot and pinfish densities and biomass, difference between pre- and post-experiment polychaete densities and biomass for other families, and post-experiment spot and pinfish stomach content biomass) showed no significant differences among treatments. Several variables (Nereidae densities, pinfish densities and biomass, and pinfish stomach content biomass) varied between cages with low and high seagrass cover (significant blocking effect, P < 0.001). Nereidae densities declined significantly in cages with high (73%) rather than with low coverage (31% cover) of seagrass. Pinfish density and biomass were significantly greater in the high seagrass cages at the end of the experiments (P < 0.001), suggesting that dense seagrass attracted them. We conclude that the high density of pinfish in dense seagrass was responsible for the decline in density of the Nereidae. The direct effect of intermediate predators (pinfish feeding on polychaete prey) can be influenced by preferential recruitment of fishes to structurally complex habitats. The direction of change of indirect effects, but not the magnitude, in multi-trophic-level food webs can be predicted by the mixed trophic impact analysis of network models. However, these indirect effects are likely to be small in magnitude relative to direct effects and may be difficult to detect experimentally, especially in low-power experimental caging studies with natural fluctuations in recruitment rates of competitor species.  相似文献   

12.
We analyzed the effects of planktivorous Holeshestes heterodon Eigenmann (Characidae) predation on the plankton community of a small subtropical reservoir, using four enclosures (volume about 17.5 m3), open to the sediment, established in the littoral zone. Two enclosures were stocked with fish (mean TL 5.7 cm), at a density of about 4–5 fish m–3 (approx. 8 g m–3), whereas two remained fishless. The experiment lasted a little longer than one month. In the fish enclosures, most Crustacea and Chaoborus larvae remained scarce, probably as a result of visually selective fish predation. In both fishless enclosures, Chaoborus larvae became abundant. However, in only one of these did large individuals become relatively numerous; this discrepancy in the demographic structure of the Chaoborus populations between the two fishless enclosures is unexplained. Only in the fishless enclosure without appreciable numbers of large Chaoborus did densities of Crustacea increase greatly. It is suggested that in the enclosure containing large Chaoborus individuals, crustacean populations were prevented from developing due to predation pressure, while the small Chaoborus larvae of the other enclosure could not readily consume these prey. Rotifers were low in abundance in the absence of fish, probably as a consequence of Chaoborus predation. Phytoplankton density increased in all four enclosures, due probably to the lack of water flow. Only in the fishless enclosure with high densities of crustaceans did phytoplankton abundance decrease markedly at the end of the experiment, perhaps because of grazing losses.  相似文献   

13.
Density-dependent behavior underpins white-tailed deer (Odocoileus virginianus) theory and management application in North America, but strength or frequency of the phenomenon has varied across the geographic range of the species. The modifying effect of stochastic environments and poor-quality habitats on density-dependent behavior has been recognized for ungulate populations around the world, including white-tailed deer populations in South Texas, USA. Despite the importance of understanding mechanisms influencing density dependence, researchers have concentrated on demographic and morphological implications of deer density. Researchers have not focused on linking vegetation dynamics, nutrition, and deer dynamics. We conducted a series of designed experiments during 2004–2012 to determine how strongly white-tailed deer density, vegetation composition, and deer nutrition (natural and supplemented) are linked in a semi-arid environment where the coefficient of variation of annual precipitation exceeds 30%. We replicated our study on 2 sites with thornshrub vegetation in Dimmit County, Texas. During late 2003, we constructed 6 81-ha enclosures surrounded by 2.4-m-tall woven wire fence on each study site. The experimental design included 2 nutrition treatments and 3 deer densities in a factorial array, with study sites as blocks. Abundance targets for low, medium, and high deer densities in enclosures were 10 deer (equivalent to 13 deer/km2), 25 deer (31 deer/km2), and 40 deer (50 deer/km2), respectively. Each study site had 2 enclosures with each deer density. We provided deer in 1 enclosure at each density with a high-quality pelleted supplement ad libitum, which we termed enhanced nutrition; deer in the other enclosure at each density had access to natural nutrition from the vegetation. We conducted camera surveys of deer in each enclosure twice per year and added or removed deer as needed to approximate the target densities. We maintained >50% of deer ear-tagged for individual recognition. We maintained adult sex ratios of 1:1–1:1.5 (males:females) and a mix of young and older deer in enclosures. We used reconstruction, validated by comparison to known number of adult males, to make annual estimates of density for each enclosure in analysis of treatment effects. We explored the effect of deer density on diet composition, diet quality, and intake rate of tractable female deer released into low- and high-density enclosures with natural nutrition on both study sites (4 total enclosures) between June 2009 and May 2011, 5 years after we established density treatments in enclosures. We used the bite count technique and followed 2–3 tractable deer/enclosure during foraging bouts across 4 seasons. Proportion of shrubs, forbs, mast, cacti, and subshrubs in deer diets did not differ (P > 0.57) between deer density treatments. Percent grass in deer diets was higher (P = 0.05) at high deer density but composed only 1.3 ± 0.3% (SE) of the diet. Digestible protein and metabolizable energy of diets were similar (P > 0.45) between deer density treatments. Likewise, bite rate, bite size, and dry matter intake did not vary (P > 0.45) with deer density. Unlike deer density, drought had dramatic (P ≤ 0.10) effects on foraging of tractable deer. During drought conditions, the proportion of shrubs and flowers increased in deer diets, whereas forbs declined. Digestible protein was 31%, 53%, and 54% greater (P = 0.06) during non-drought than drought during autumn, winter, and spring, respectively. We studied the effects of enhanced nutrition on the composition and quality of tractable female deer diets between April 2007 and February 2009, 3 years after we established density treatments in enclosures. We also estimated the proportion of supplemental feed in deer diets. We used the 2 low-density enclosures on each study site, 1 with enhanced nutrition and 1 with natural nutrition (4 total enclosures). We again used the bite count technique and 2–3 tractable deer living in each enclosure. We estimated proportion of pelleted feed in diets of tractable deer and non-tractable deer using ratios of stable isotopes of carbon. Averaged across seasons and nutrition treatments, shrubs composed a majority of the vegetation portion of deer diets (44%), followed by mast (26%) and forbs (15%). Enhanced nutrition influenced the proportion of mast, cacti, and flowers in the diet, but the nature and magnitude of the effect varied by season and year. The trend was for deer in natural-nutrition enclosures to eat more mast. We did not detect a statistical difference (P = 0.15) in the proportion of shrubs in diets between natural and enhanced nutrition, but deer with enhanced nutrition consumed 7–24% more shrubs in 5 of 8 seasons. Deer in enhanced-nutrition enclosures had greater (P = 0.03) digestible protein in their overall diet than deer in natural-nutrition enclosures. The effect of enhanced nutrition on metabolizable energy in overall diets varied by season and was greater (P < 0.04) for enhanced-nutrition deer during summer and autumn 2007 and winter 2008. In the enhanced-nutrition treatment, supplemental feed averaged 47–80% of the diet of tractable deer. Of non-tractable deer in all density treatments with enhanced nutrition, 97% (n = 128 deer) ate supplemental feed. For non-tractable deer averaged across density treatments, study sites, and years, percent supplemental feed in deer diets exceeded 70% for all sex and age groups. We determined if increasing deer density and enhanced nutrition resulted in a decline in preferred forbs and shrubs and an increase in plants less preferred by deer. We sampled all 12 enclosures via 20, 50-m permanent transects in each enclosure. Percent canopy cover of preferred forbs was similar (P = 0.13) among deer densities averaged across nutrition treatments and sampling years (low density: = 8%, SE range 6–10; medium density: 5%, 4–6; high density: 4%, 3–5; SE ranges are presented because SEs associated with backtransformed means are asymetrical). Averaged across deer densities, preferred forb canopy cover was similar between nutrition treatments in 2004; but by 2012 averaged 20 ± 17–23% in enhanced-nutrition enclosures compared to 10 ± 8–13% in natural-nutrition enclosures (P = 0.107). Percent canopy cover of other forbs, preferred shrubs, other shrubs, and grasses, as well as Shannon's index, evenness, and species richness were similar (P > 0.10) among deer densities, averaged across nutrition treatments and sampling years. We analyzed fawn:adult female ratios, growth rates of fawns and yearlings, and survival from 6 to 14 months of age and for adults >14 months of age. We assessed adult body mass and population growth rates (lambda apparent, λAPP) to determine density and nutrition effects on deer populations in the research enclosures during 2004–2012. Fawn:adult female ratios declined (P = 0.04) from low-medium density to high density in natural-nutrition enclosures but were not affected (P = 0.48) by density in enhanced nutrition enclosures although, compared to natural nutrition, enhanced nutrition increased fawn:adult female ratios by 0.15 ± 0.12 fawns:adult female at low-medium density and 0.44 ± 0.17 fawns:adult female at high density. Growth rate of fawns was not affected by deer density under natural or enhanced nutrition (P > 0.17) but increased 0.03 ± 0.01 kg/day in enhanced-nutrition enclosures compared to natural nutrition (P < 0.01). Growth rate of yearlings was unaffected (P > 0.71) by deer density, but growth rate increased for males in some years at some density levels in enhanced-nutrition enclosures. Adult body mass declined in response to increasing deer density in natural-nutrition enclosures for both adult males (P < 0.01) and females (P = 0.10). Enhanced nutrition increased male body mass, but female mass did not increase compared to natural nutrition. Survival of adult males was unaffected by deer density in natural- (P = 0.59) or enhanced- (P = 0.94) nutrition enclosures. Survival of adult females was greatest in medium-density enclosures with natural nutrition but similar at low and high density (P = 0.04). Enhanced nutrition increased survival of females (P < 0.01) and marginally for males (P = 0.11). Survival of fawns 6–14 months old was unaffected (P > 0.35) by density in either natural- or enhanced-nutrition treatments but was greater (P = 0.04) under enhanced nutrition. Population growth rate declined (P = 0.06) with increasing density in natural-nutrition enclosures but not (P = 0.55) in enhanced nutrition. Enhanced nutrition increased λAPP by 0.32. Under natural nutrition, we found only minor effects of deer density treatments on deer diet composition, nutritional intake, and plant communities. However, we found density-dependent effects on fawn:adult female ratios, adult body mass, and population growth rate. In a follow-up study, deer home ranges in our research enclosures declined with increasing deer density. We hypothesized that habitat quality varied among home ranges and contributed to density-dependent responses. Variable precipitation had a greater influence on deer diets, vegetation composition, and population parameters than did deer density. Also, resistance to herbivory and low forage quality of the thornshrub vegetation of our study sites likely constrained density-dependent behavior by deer. We posit that it is unlikely that, at our high-density (50 deer/km2) and perhaps even medium-density (31 deer/km2) levels, negative density dependence would occur without several wet years in close association. In the past century, this phenomenon has only happened once (1970s). Thus, density dependence would likely be difficult to detect in most years under natural nutrition in this region. Foraging by deer with enhanced nutrition did not result in a reduction in preferred plants in the vegetation community and had a protective effect on preferred forbs because ≤53% of deer diets consisted of vegetation. However, enhanced nutrition improved fitness of individual deer and deer populations, clearly demonstrating that nutrition is limiting for deer populations under natural conditions in western South Texas. © 2019 The Authors. Wildlife Monographs published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

14.
Temperament traits are seen in many animal species, and recent evolutionary models predict that they could be maintained by heterogeneous selection. We tested this prediction by examining density‐dependent selection in juvenile common lizards Zootoca vivipara scored for activity, boldness and sociability at birth and at the age of 1 year. We measured three key life‐history traits (juvenile survival, body growth rate and reproduction) and quantified selection in experimental populations at five density levels ranging from low to high values. We observed consistent individual differences for all behaviours on the short term, but only for activity and one boldness measure across the first year of life. At low density, growth selection favoured more sociable lizards, whereas viability selection favoured less active individuals. A significant negative correlational selection on activity and boldness existed for body growth rate irrespective of density. Thus, behavioural traits were characterized by limited ontogenic consistency, and natural selection was heterogeneous between density treatments and fitness traits. This confirms that density‐dependent selection plays an important role in the maintenance of individual differences in exploration‐activity and sociability.  相似文献   

15.
《Small Ruminant Research》2007,68(2-3):216-221
Weed control in fallow management to conserve soil moisture and nutrients is the largest variable cost to dryland grain production. Our objective was to compare burning, grazing, tilling, trampling and clipping wheat stubble fields on changes in total aboveground biomass and weed density. Treatments were evaluated in three experiments using a randomized complete block design for each experiment with four replications at each site. Contrasts statements were used to make pre-planned comparisons. For experiment 1, treatments were fall tilled, fall grazed, spring grazed, fall and spring combined (Fall/Spr) grazed, and an untreated control. For grazing treatments, five mature ewes were confined with electric fence to 111 m2 plot for 24 h for fall and spring resulting in a stocking rate of 452 sheep day/ha. For Fall/Spr the stocking rate was 904 sheep day/ha. For experiment 2, treatments were fall grazed, fall burned, fall tilled, and an untreated control. In experiment 3, treatments were fall trampling by sheep, spring trampling by sheep, fall and spring combined (Fall/Spr) trampling by sheep, stubble hand clipped to a height of 4.5 cm, and an untreated control. Trampling treatments were applied at the same stocking rates as grazing treatments but sheep were muzzled to prevent intake. Data were collected in the fall, prior to treatment imposition, and spring, after treatments had been removed. Post treatment biomass and weed density were greater (P < 0.05) in either control or tilled plots when compared to grazed plots. Post treatment biomass and weed density were greater (P < 0.01) for control than burned plots. Post treatment biomass, weed density, and percent change in these variables, did not differ (P > 0.08) between burned and tilled, and burned and grazed treatments. These results indicate the potential for using grazing sheep as a component in fallow management to reduce biomass and control weeds.  相似文献   

16.
The New Zealand mud snail Potamopyrgus antipodarum (Hydrobiidae) and the pulmonate Physella acuta (Physidae) have invaded freshwaters in many parts of the world and become established. They co-exist in many streams, lakes and ponds in New Zealand, often at high densities. In the present study the effects of intraspecific- and interspecific interactions between the two species on growth and reproductive output were examined in laboratory mesocosms. In 30-day experiments, growth of Potamopyrgus antipodarum was lower in high density treatments than controls providing evidence for competition at higher densities of both snail species. No competitive effect was obtained for Physella acuta when controls were compared with high-density treatments, but growth was reduced at high densities of conspecifics. Numbers of juveniles released by Potamopyrgus antipodarum in 40 day trials declined at high snail densities and were lowest at high densities of conspecifics. Egg production by Physella acuta was also reduced at high snail densities. However, when the two species were kept together at equal densities (total snail density twice that of controls), egg production by Physella acuta was significantly higher than in all other treatments, suggesting facilitation by the congenor. Lastly, in a 10-day experiment, Physella acuta grew faster in water conditioned by Potamopyrgus antipodarum than in Physa-conditioned water, whereas Potamopyrgus antipodarum showed no growth response to Physella-conditioned water. Overall, our results indicate that growth and reproductive output of both snail species are influenced more by the density of conspecifics than the presence and density of the other species. The successful co-existence of the two species in New Zealand freshwaters therefore may be a reflection, at least in part, of few competitive interactions between them.  相似文献   

17.
Harper EB  Semlitsch RD 《Oecologia》2007,153(4):879-889
Populations of species with complex life cycles have the potential to be regulated at multiple life history stages. However, research tends to focus on single stage density-dependence, which can lead to inaccurate conclusions about population regulation and subsequently hinder conservation efforts. In amphibians, many studies have demonstrated strong effects of larval density and have often assumed that populations are regulated at this life history stage. However, studies examining density regulation in the terrestrial stages are rare, and the functional relationships between terrestrial density and vital rates in amphibians are unknown. We determined the effects of population density on survival, growth and reproductive development in the terrestrial stage of two amphibians by raising juvenile wood frogs (Rana sylvatica) and American toads (Bufo americanus) at six densities in terrestrial enclosures. Density had strong negative effects on survival, growth and reproductive development in both species. We fitted a priori recruitment functions to describe the relationship between initial density and the density of survivors after one year, and determined the functional relationship between initial density and mass after one year. Animals raised at the lowest densities experienced growth and survival rates that were over twice as great as those raised at the highest density. All female wood frogs in the lowest density treatment showed signs of reproductive development, compared to only 6% in the highest density treatment. Female American toads reached minimum reproductive size only at low densities, and male wood frogs and American toads reached maturity only in the three lowest density treatments. Our results demonstrate that in the complex life cycle of amphibians, density in the terrestrial stage can reduce growth, survival and reproductive development and may play an important role in amphibian population regulation. We discuss the implications of these results for population regulation in complex life cycles and for amphibian conservation.  相似文献   

18.
Host density can increase infection rates and reduce host fitness as increasing population density enhances the risk of becoming infected either through increased encounter rate or because host condition may decline. Conceivably, potential hosts could take high host density as a cue to up-regulate their defence systems. However, as host density usually covaries with food availability, it is difficult to examine the importance of host density in isolation. Thus, we performed two full-factorial experiments that varied juvenile densities of Daphnia magna (a freshwater crustacean) and food availability independently. We also included a simulated high-density treatment, where juvenile experimental animals were kept in filtered media that previously maintained Daphnia at high-density. Upon reaching adulthood, we exposed the Daphnia to their sterilizing bacterial parasite, Pasteuria ramosa, and examined how the juvenile treatments influenced the likelihood and severity of infection (Experiment I) and host immune investment (Experiment II). Neither juvenile density nor food treatments affected the likelihood of infection; however, well-fed hosts that were well-fed as juveniles produced more offspring prior to sterilization than their less well-fed counterparts. By contrast, parasite growth was independent of host juvenile resources or host density. Parasite-exposed hosts had a greater number of circulating haemocytes than controls (i.e., there was a cellular immune response), but the magnitude of immune response was not mediated by food availability or host density. These results suggest that density dependent effects on disease arise primarily through correlated changes in food availability: low food could limit parasitism and potentially curtail epidemics by reducing both the host’s and parasite’s reproduction as both depend on the same food.  相似文献   

19.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

20.
The development of artificial incubation techniques in astacid crayfish has attracted attention from scientists in many countries ever since the nineteenth century. It is only in the last few years that these techniques, along with studies on egg storage and transport, have provided reliable options for improving the reproductive phase in farming. The juveniles produced need to be reared until they reach a sufficient size both for restocking and for growing purposes. In view of the current level of knowledge of rearing juvenile astacids, two 80-day experiments were carried out under controlled conditions to compare the survival and growth of Stage 2 juvenile signal crayfish (Pacifastacus leniusculus) from two origins: maternal or artificial incubation. In the first experiment, three treatments were tested: juveniles from artificially incubated eggs with formaldehyde treatments, juveniles from maternal incubation and a mixture from both origins (50% each). Survival rates ranged from 87.8% to 93.3% with no significant differences among treatments. Crayfish from artificial incubation grew significantly faster (11.47 mm carapace length (CL), 373.80 mg weight) than crayfish from maternal incubation. In the second experiment, a bifactorial design included four treatments: the crayfish was derived from artificial or from maternal incubation and was fed once a day or twice a day. Final survival rates ranged from 68.89% to 77.78%, with no significant differences among treatments. Crayfish from artificial incubation grew significantly faster than crayfish from maternal incubation. The highest CL (14.54 mm) and weight (780.13 mg) were reached by the juveniles from artificial incubation that were fed once a day. No significant differences were found between the two feeding frequencies. Results showed that artificial incubation with formaldehyde treatments had no harmful effects and made it feasible to get a better performance from the juveniles obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号