首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density functional theory (DFT) and time-dependent DFT (TDDFT) studies on a photoactive {FeNO}6 nitrosyl [(PaPy3)Fe(NO)](ClO4)2 (1) and the corresponding light-insensitive {FeNO}7 species [(PaPy3)Fe(NO)](ClO4) (2) have been carried out to determine the origin of NO photolability of 1. The iron center in these two nitrosyls formally exists in 2+ oxidation state and the difference in π-accepting ability of NO+ in 1 versus NO in 2 greatly affects the extent of NO photolability of these two nitrosyls. Low energy transitions from the carboxamido/π(FeNO) to the FeNO antibonding molecular orbitals lead to release of NO from 1 upon exposure to visible light. The decreased π-accepting ability of the NO moiety in 2 does not favor such transitions; instead transitions from orbitals centered at the FeNO unit to the πpy orbitals of the ligand frame become more favorable and the photolability of NO is lost in 2.  相似文献   

2.
Photodynamic therapy (PDT) conducted by photosensitizers producing cytotoxic reactive oxygen species (ROS) under light irradiation is widely used in cancer treatment. A great number of photoactive nanoscale metal–organic frameworks (NMOFs) have been prepared for PDT. With the development of biomedicine and nanotechnology, many synergistic cancer therapies have emerged. In this mini-review, an overview on the latest progress in the application of NMOFs in PDT is provided, with emphasis on the recent emergence of some synergistic therapies.  相似文献   

3.
《Inorganica chimica acta》1986,117(2):151-155
The matrix isolated binary nitrosyls, Fe(NO)x, x ⩽ 4, formed upon co-condensation of iron with nitric oxide have been studied by infrared and Mössbauer spectroscopies. Infrared data suggest that the unsaturated complexes (x = 1, 2) contain linear NO ligands. The isomer shifts of all four complexes are consistent with covalently bonded Fe(0). In 100% NO, Fe(NO)4 is the major product and gives the identical Mössbauer spectrum as Fe(NO)4 made from the high pressure reaction of Fe(CO)5 with NO. In addition, a second product, probably Fe(NO)3 is detected in the Mössbauer spectmm of Fe(NO)4 made by both procedures. Evidence is seen for a partially reversible temperature dependent equilibrium between Fe(NO)3 and Fe(NO)4, with Fe(NO)4 favored at low temperatures. The unusal reactivity of NO with iron atoms is discussed.  相似文献   

4.
Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed.  相似文献   

5.
Photodynamic therapy using methyl 5-aminolevulinate (MAL) as a precursor of the photosensitizing agent protoporphyrin IX is widely used in clinical practice for the treatment of different pathologies, including cancer. In this therapeutic modality, MAL treatment promotes the forced accumulation of the endogenous photoactive compound protoporphyrin IX in target malignant cells. Subsequent irradiation of treated tissues with an appropriate visible light source induces the production of reactive oxygen species (ROS) that, once accumulated above a critical level, promote cell death. Here we demonstrate that a photodynamic treatment with low MAL concentrations can be used to promote a moderate production of endogenous ROS, which efficiently stimulates cell growth in human immortalized keratinocytes (HaCaT). We also show that this proliferative response requires Src kinase activity and is associated to a transient induction of cyclin D1 expression. Taken together, these results demonstrate for the first time that a combination of light and a photoactive compound can be used to modulate cell cycle progression through Src kinase activation and that a moderate intracellular increase of photogenerated ROS efficiently stimulates cell proliferation.  相似文献   

6.
The ambidentate ligand nitrite (NO2) binds to transition metal centers through the N (nitro) or O (nitrito) atom. In metal porphyrin complexes, the energy difference between the two linkage isomers is small and hence slight differences in reaction conditions and/or ligand design give rise to formation of the isomers in different ratios. In the present work, similar behavior has been observed in case of the {Fe-NO}6 nitrosyl [(Me2bpb)Fe(NO)(NO2)] (2), derived from a non-heme planar dicarboxamide ligand N,N′-bispyridinecarboxamido-4,5-dimethylbenzenediamine (H2Me2bpb). Under anaerobic conditions, reaction of the Fe(III) complex [(Me2bpb)Fe(py)2]ClO4 (1) with NO(g) in MeCN affords 2, a product that contains both the N- and O-bound isomer in different ratios depending on the reaction conditions. In protic solvents, the same reaction affords the {Fe-NO}7 nitrosyl [(Me2bpb)Fe(NO)] (3). Both nitrosyls have been characterized by infrared spectroscopy and X-ray diffraction studies.  相似文献   

7.
8.
The Mn4Ca complex that is involved in water oxidation in PSII is affected by near-infrared (NIR) light in certain redox states and these phenomena can be monitored by electron paramagnetic resonance (EPR) at low temperature. Here we report the action spectra of the NIR effects in the S2 and S3 states in PSII from plants and the thermophilic cyanobacterium Thermosynechococcus elongatus. The action spectra obtained are very similar in both S states, indicating the presence of the same photoactive form of the Mn4Ca complex in both states. Since the chemical nature of the photoactive species is not known, an unequivocal interpretation of this result cannot be made; however, it appears to be more easily reconciled with the view that the redox state of the Mn4Ca cluster does not change from the S2 to the S3 transition, at least in those centers sensitive to NIR light. The temperature dependence of the NIR effect and the action spectra for S2 indicate the presence of structural heterogeneity in the Mn4Ca cluster.  相似文献   

9.
Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). While it has been hypothesized that the global production of siderophores by heterotrophic bacteria and some cyanobacteria constitutes the bulk of organic ligands binding iron in the ocean because stability constants of siderophores and these organic ligands are similar, and because ligand concentrations rise sharply in response to iron fertilization events, direct evidence for this proposal is lacking. This lack is due to the difficulty in characterizing these ligands due both to their extremely low concentrations and their highly heterogeneous nature. The situation for characterizing photoactive siderophores in situ is more problematic because of their expected short lifetimes in the photic zone. An alternative approach is to make use of high sensitivity molecular technology (qPCR) to search for siderophore biosynthesis genes related to the production of photoactive siderophores. In this way one can access their “biochemical potential” and utilize this information as a proxy for the presence of these siderophores in the marine environment. Here we show, using qPCR primers designed to detect biosynthetic genes for the siderophores vibrioferrin, petrobactin and aerobactin that such genes are widespread and based on their abundance, the “biochemical potential” for photoactive siderophore production is significant. Concurrently we also briefly examine the microbial biodiversity responsible for such production as a function of depth and location across a North Atlantic transect.  相似文献   

10.
Phthalocyanines have long been used as primary donor molecules in synthetic light-powered devices due to their superior properties when compared to natural light activated molecules such as chlorophylls. Their use in biological contexts, however, has been severely restricted due to their high degree of self-association, and its attendant photoquenching, in aqueous environments. To this end we report the rational redesign of a de novo four helix bundle di-heme binding protein into a heme and Zinc(II) phthalocyanine (ZnPc) dyad in which the ZnPc is electronically and photonically isolated. The redesign required transformation of the homodimeric protein into a single chain four helix bundle and the addition of a negatively charge sulfonate ion to the ZnPc macrocycle. To explore the role of topology on ZnPc binding two constructs were made and the resulting differences in affinity can be explained by steric interference of the newly added connecting loop. Singular binding of ZnPc was verified by absorption, fluorescence, and magnetic circular dichroism spectroscopy. The engineering guidelines determined here, which enable the simple insertion of a monomeric ZnPc binding site into an artificial helical bundle, are a robust starting point for the creation of functional photoactive nanodevices.  相似文献   

11.
Given their sessile nature, plants continuously face unfavorable conditions throughout their life cycle, including water scarcity, extreme temperatures and soil pollution. Among all, metal(loid)s are one of the main classes of contaminants worldwide, posing a serious threat to plant growth and development. When in excess, metals which include both essential and non-essential elements, quickly become phytotoxic, inducing the occurrence of oxidative stress. In this way, in order to ensure food production and safety, attempts to enhance plant tolerance to metal(loid)s are urgently needed. Nitric oxide (NO) is recognized as a signaling molecule, highly involved in multiple physiological events, like the response of plants to abiotic stress. Thus, substantial efforts have been made to assess NO potential in alleviating metal-induced oxidative stress in plants. In this review, an updated overview of NO-mediated protection against metal toxicity is provided. After carefully reviewing NO biosynthetic pathways, focus was given to the interaction between NO and the redox homeostasis followed by photosynthetic performance of plants under metal excess.  相似文献   

12.
NADPH:protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide. To elucidate the physiological function of three differentially regulated POR isoforms (PORA, PORB and PORC) in Arabidopsis thaliana, we isolated T-DNA tagged null mutants of porB and porC. The mature seedlings of the mutants had normal photosynthetic competencies, showing that PORB and PORC are interchangeable and functionally redundant in developed plants. In etiolated seedlings, only porB showed a reduction in the photoactive protochlorophyllide and the size of prolamellar bodies (PLBs), indicating that PORB, as well as PORA, functioned in PLB assembly and photoactive protochlorophyllide formation in etiolated seedlings. When illuminated, the etiolated porB seedling was able to green to a similar extent as the wild type, whereas the greening was significantly reduced under low light conditions. During greening, high light irradiation increased the level of PORC protein, and the greening of porC was repressed under high light conditions. The porB, but not porC, etiolated seedling was more sensitive to the far-red block of greening than the wild type, which is caused by depletion of endogenous POR proteins resulting in photo-oxidative damage. These results suggest that, at the onset of greening, PLBs are important for efficient capture of light energy for photoconversion under various light conditions, and PORC, which is induced by high light irradiation, contributes to photoprotection during greening of the etiolated seedlings.  相似文献   

13.
Since the discovery of NO as the endothelium-derived relaxing factor, there has been considerable interest in how NO interacts with hemoglobin (Hb). Numerous investigations have highlighted the possibility that rather than operating as a sink to consume NO, the vasculature can operate as a delivery mechanism for NO. The principal hypothesis proposed to explain this phenomenon is that Hb can transport NO on the conserved cysteine residue beta93 and deliver that NO to the tissues in an allosterically dependent manner. This proposal has been termed the S-Nitrosohemoglobin (SNO-Hb) Hypothesis. This review addresses the experimental evidence that led to development of this hypothesis and examines much of the research that resulted from its generation. Specifically it covers the evidence concerning NO in the vasculature, the SNO-Hb Hypothesis itself, the biochemical and biophysical data relating to NO and Hb interactions, SNO-Hb in human physiology, and alternative vascular forms of NO. Finally a model of NO in the vasculature in which SNO-Hb forms the central core is proposed.  相似文献   

14.
Semitransparent organic solar cells (ST‐OSCs) have attracted extensive attention for their potential greenhouse applications. Conventional ST‐OSCs are typically based on indium tin oxide (ITO) electrodes which suffer from mechanical brittleness. Therefore, alternatives for ITO are required for realization of foldable‐flexible ST‐OSCs (FST‐OSCs). Herein, flexible poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) electrodes are prepared as ITO alternatives via polyhydroxy compound (xylitol) microdoping and acid treatment. As a result, flexible opaque OSCs based on PBDB‐T‐2F:Y6 photoactive system yield a high efficiency of 14.20%. The desirable optical properties of modified PEDOT:PSS electrodes in the visible light region and PBDB‐T‐2F:Y6 photoactive layer in the near‐infrared region facilitate the fabrication of FST‐OSCs with over 10% efficiency and 21% average visible light transmittance. Those FST‐OSCs also display excellent mechanical stability against bending and folding due to the xylitol doping, where over 80% of the initial efficiency can still be maintained even after 1000 folding cycles. Meanwhile, parallel comparisons between plants grown under direct sunlight with a FST‐OSCs roof and those under direct sunlight yield very similar results in terms of branch sturdiness and hypertrophic leaves. The results pave the way for realizing high‐performing FST‐OSCs based on PEDOT:PSS electrodes that could utilize visible light for plant growth and infrared light for power generation.  相似文献   

15.
A photoactive yellow protein purified from the phototrophic bacterium Ectothiorhodospira halophila, has been crystallized by vapor diffusion from ammonium sulfate solution. The hexagonal crystals are in space group P6(3) with unit cell dimensions a = b = 66.89, c = 40.68 A and appear to have one 15,000-dalton protein in the asymmetric unit. Photoactive yellow protein contains a chromophore with retinal-like properties; its color can be reversibly bleached, by visible light, with kinetics similar to those of sensory rhodopsin. The crystals can also be bleached by an intense visible light source without cracking, but are not bleached by x-rays. This suggests that structures can be obtained for both bleached and colored conformations of the protein-bound chromophore. The crystals diffract strongly to at least 1.3 A resolution, are resistant to radiation damage, and are suitable for a high resolution structure determination. The covalently bound chromophore and photobleaching characteristics of the protein offer unique opportunities to study protein conformational change and refolding as well as to understand the mechanisms of light-induced conformational change at atomic resolution.  相似文献   

16.
夏海威  施国新  黄敏  吴娟 《生态学报》2015,35(10):3139-3147
一氧化氮(NO)作为一种重要的信号分子,在调节植物重金属胁迫抗性方面上起着非常重要的作用。综述了NO在植物体内的产生途径,重金属胁迫下植物体内内源NO含量的变化以及外源NO与内源NO对植物重金属胁迫抗性的影响。大量研究表明外源NO能够增强植物对重金属胁迫的抗性,一方面是通过增强植物细胞的抗氧化系统或直接清除活性氧,另一方面是通过影响植物对重金属的吸收以及重金属在植物细胞内的分布。然而内源NO在调节植物重金属胁迫抗性上的功能角色仍存在争议。有些研究表明内源NO是有益的,能够缓解重金属胁迫诱导的毒性;但是也有证据表明内源NO是有害的,能够通过促进植物对重金属的吸收以及对植物螯合素进行S-亚硝基化弱化其解毒功能,从而参与重金属诱导的毒害反应和细胞凋亡过程。  相似文献   

17.
Inducible nitric oxide synthase (iNOS) is one of three enzymes generating nitric oxide (NO) from the amino acid L-arginine. iNOS-derived NO plays an important role in several physiological and pathophysiological conditions. NO is a free radical which produces many reactive intermediates that account for its bioactivity. In the human lung, the alveolar macrophage is an important producer of cytokines and this production may be modified by NO. Moreover, high concentrations of NO have been shown to increase nuclear factor kappaB (NF-kB) activation. Recent investigations of NO expression in tumor tissue indicated that, at least for certain tumors, NO may mediate one or more roles during the growth of human cancer. We have studied iNOS in two tissue groups: normal human lung tissue and human lung cancer tissue. We localized iNOS in these tissues by immunohistochemistry and tested the mRNA expression by RT-PCR, the protein level by Western blot, and the protein activity by radiometric analysis. The results demonstrate different expression, localization and activity of iNOS in normal versus tumor tissue. This is suggestive of a role for NO production from iNOS in human lung cancer because high concentrations of this short molecule may transform to highly reactive compounds such as peroxynitrite (ONOO-); moreover, through the upregulator NF-kB, they can induce a chronic inflammatory state representing an elevated risk for cell transformation to cancer.  相似文献   

18.
Nitric oxide (*NO) is a key signaling molecule in different physiological processes of animals and plants. However, little is known about the metabolism of endogenous *NO and other reactive nitrogen species (RNS) in plants under abiotic stress conditions. Using pea plants exposed to six different abiotic stress conditions (high light intensity, low and high temperature, continuous light, continuous dark and mechanical wounding), several key components of the metabolism of RNS including the content of *NO, S-nitrosothiols (RSNOs) and nitrite plus nitrate, the enzyme activities of l-arginine-dependent nitric oxide synthase (NOS) and S-nitrosogluthathione reductase (GSNOR), and the profile of protein tyrosine nitration (NO(2)-Tyr) were analyzed in leaves. Low temperature was the stress that produced the highest increase of NOS and GSNOR activities, and this was accompanied by an increase in the content of total *NO and S-nitrosothiols, and an intensification of the immunoreactivity with an antibody against NO(2)-Tyr. Mechanical wounding, high temperature and light also had a clear activating effect on the different indicators of RNS metabolism in pea plants. However, the total content of nitrite and nitrate in leaves was not affected by any of these stresses. Considering that protein tyrosine nitration is a potential marker of nitrosative stress, the results obtained suggest that low and high temperature, continuous light and high light intensity are abiotic stress conditions that can induce nitrosative stress in pea plants.  相似文献   

19.
The role of nitric oxide in cancer   总被引:10,自引:0,他引:10  
Xu W  Liu LZ  Loizidou M  Ahmed M  Charles IG 《Cell research》2002,12(5-6):311-320
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including vasodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases (NOS) comprises inducible NOS (iNOS), endothelia (eNOS), and neuronal NOS (nNOS). Interestingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting the etiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and has been associated with tumour grade, proliferation rate and expression of important signaling components associated with cancer development such as the oestrogen receptor. It appears that high levels of NOS expression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumor cells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxically therefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic properties. Increased NO-generation in a cell may select mutant p53 cells and contribute to tumour angiogenesis by upregulating VEGF. In addition, NO may modulate tumour DNA repair mechanisms by upregulating p53, poly(ADP-ribose) polymerase (PARP) and the DNA-dependent protein kinase (DNA-PK). An understanding at the molecular level of the role of NO in cancer will have profound therapeutic implications for the diagnosis and treatment of disease.  相似文献   

20.
The role of nitric oxide in cancer   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases (NOS) comprises inducible NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). Interestingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting the etiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and has been associated with tumour grade, proliferation rate and expression of important signaling components associated with cancer development such as the oestrogen receptor. It appears that high levels of NOS expression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumor cells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxically therefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic pro  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号