首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A newly identified costimulatory molecule, programmed death-1 (PD-1), provides a negative signal that is essential for immune homeostasis. However, it has been suggested that its ligands, B7-H1 (PD-L1) and B7-dendritic cells (B7-DC; PD-L2), could also costimulate T cell proliferation and cytokine secretion. Here we demonstrate the involvement of PD-1/B7-H1 and B7-DC interaction in the development of colitis. We first examined the expression profiles of PD-1 and its ligands in both human inflammatory bowel disease and a murine chronic colitis model induced by adoptive transfer of CD4(+)CD45RB(high) T cells to SCID mice. Second, we assessed the therapeutic potential of neutralizing anti-B7-H1 and/or B7-DC mAbs using this colitis model. We found significantly increased expression of PD-1 on T cells and of B7-H1 on T, B, and macrophage/DCs in inflamed colon from both inflammatory bowel disease patients and colitic mice. Unexpectedly, the administration of anti-B7-H1, but not anti-B7-DC, mAb after transfer of CD4(+)CD45RB(high) T cells suppressed wasting disease with colitis, abrogated leukocyte infiltration, and reduced the production of IFN-gamma, IL-2, and TNF-alpha, but not IL-4 or IL-10, by lamina propria CD4(+) T cells. These data suggest that the interaction of PD-1/B7-H1, but not PD-1/B7-DC, might be involved in intestinal mucosal inflammation and also show a possible role of interaction between B7-H1 and an as yet unidentified receptor for B7-H1 in inducing T cell activation.  相似文献   

2.
PD-1 is an immunoinhibitory receptor that belongs to the CD28/CTLA-4 family. B7-H1 (PD-L1) and B7-DC (PD-L2), which belong to the B7 family, have been identified as ligands for PD-1. Paradoxically, it has been reported that both B7-H1 and B7-DC co-stimulate or inhibit T cell proliferation and cytokine production. To determine the role of B7-H1 and B7-DC in T cell-APC interactions, we examined the contribution of B7-H1 and B7-DC to CD4+ T cell activation by B cells, dendritic cells, and macrophages using anti-B7-H1, anti-B7-DC, and anti-PD-1 blocking mAbs. Anti-B7-H1 mAb and its Fab markedly inhibited the proliferation of anti-CD3-stimulated naive CD4+ T cells, but enhanced IL-2 and IFN-gamma production in the presence of macrophages. The inhibition of T cell proliferation by anti-B7-H1 mAb was abolished by neutralizing anti-IFN-gamma mAb. Coculture of CD4+ T cells and macrophages from IFN-gamma-deficient or wild-type mice showed that CD4+ T cell-derived IFN-gamma was mainly responsible for the inhibition of CD4+ T cell proliferation. Anti-B7-H1 mAb induced IFN-gamma-mediated production of NO by macrophages, and inducible NO synthase inhibitors abrogated the inhibition of CD4+ T cell proliferation by anti-B7-H1 mAb. These results indicated that the inhibition of T cell proliferation by anti-B7-H1 mAb was due to enhanced IFN-gamma production, which augmented NO production by macrophages, suggesting a critical role for B7-H1 on macrophages in regulating IFN-gamma production by naive CD4+ T cells and, hence, NO production by macrophages.  相似文献   

3.
Expression of programmed death 1 ligands by murine T cells and APC   总被引:31,自引:0,他引:31  
Programmed death 1 (PD-1) is a new member of the CD28/CTLA-4 family, which has been implicated in the maintenance of peripheral tolerance. Two ligands for PD-1, namely, B7-H1 (PD-L1) and B7-DC (PD-L2), have recently been identified as new members of the B7 family but their expression at the protein level remains largely unknown. To characterize the expression of B7-H1 and B7-DC, we newly generated an anti-mouse B7-H1 mAb (MIH6) and an anti-mouse B7-DC mAb (TY25). MIH6 and TY25 immunoprecipitated a single molecule of 43 and 42 kDa from the lysate of B7-H1 and B7-DC transfectants, respectively. Flow cytometric analysis revealed that B7-H1 was broadly expressed on the surface of mouse tumor cell lines while the expression of B7-DC was rather restricted. PD-1 was expressed on anti-CD3-stimulated T cells and anti-IgM plus anti-CD40-stimulated B cells at high levels but was undetectable on activated macrophages or DCs. B7-H1 was constitutively expressed on freshly isolated splenic T cells, B cells, macrophages, and dendritic cells (DCs), and up-regulated on T cells by anti-CD3 stimulation on macrophages by LPS, IFN-gamma, GM-CSF, or IL-4, and on DCs by IFN-gamma, GM-CSF, or IL-4. In contrast, B7-DC expression was only inducible on macrophages and DCs upon stimulation with IFN-gamma, GM-CSF, or IL-4. The inducible expression of PD-1 ligands on both T cells and APCs may suggest new paradigms of PD-1-mediated immune regulation.  相似文献   

4.
Fibroblast-like synoviocytes (FLS) and T cells can activate each other in vitro, and in vivo interactions between these cells may be important in rheumatoid arthritis (RA), yet FLS lack significant expression of CD28 ligands. We sought to identify molecules homologous to CD28 ligands that are strongly expressed by FLS, and documented strong B7-H3 expression on FLS and by fibroblasts of other tissues, which was unaffected by a variety of cytokines. Western blot analysis of FLS lysates showed predominant expression of the larger, four Ig-like domain isoform of B7-H3. Immunohistological sections of RA synovial tissue showed strong staining for B7-H3 on FLS. Cells expressing B7-H3 were distinct from but in close proximity to cells that expressed CD45, CD20, and CD3. Confocal microscopy of FLS and T cell cocultures showed localization of B7-H3 in the region of the T cell-FLS contact point, but distinct from the localization of T cell CD11a/CD18 (LFA-1) and FLS CD54 (ICAM-1). Reduction of B7-H3 expression on FLS by RNA interference affected interactions of FLS with resting T cells or cytokine-activated T cells. Resting T cells showed increased production of TNF-alpha, IFN-gamma, and IL-2, whereas cytokine-activated T cells showed reduced cytokine production relative to control. However, cytokine production by T cells activated through their TCR was not notably altered by knock down of B7-H3. These observations suggest that B7-H3 may be important for the interactions between FLS and T cells in RA, as well as other diseases, and the outcome of such interactions depends on the activation state of the T cell.  相似文献   

5.
Suppression of dendritic cell (DC) function in HIV-1 infection is thought to contribute to inhibition of immune responses and disease progression, but the mechanism of this suppression remains undetermined. Using the rhesus macaque model, we show B7-H1 (programmed death [PD]-L1) is expressed on lymphoid and mucosal DCs (both myeloid DCs and plasmacytoid DCs), and its expression significantly increases after SIV infection. Meanwhile, its receptor, PD-1, is upregulated on T cells in both peripheral and mucosal tissues and maintained at high levels on SIV-specific CD8(+) T cell clones in chronic infection. However, both B7-H1 and PD-1 expression in SIV controllers was similar to that of controls. Expression of B7-H1 on both peripheral myeloid DCs and plasmacytoid DCs positively correlated with levels of PD-1 on circulating CD4(+) and CD8(+) T cells, viremia, and declining peripheral CD4(+) T cell levels in SIV-infected macaques. Importantly, blocking DC B7-H1 interaction with PD-1(+) T cells could restore SIV-specific CD4(+) and CD8(+) T cell function as evidenced by increased cytokine secretion and proliferative capacity. Combined, the results indicate that interaction of B7-H1-PD-1 between APCs and T cells correlates with impairment of CD4(+) Th cells and CTL responses in vivo, and all are associated with disease progression in SIV infection. Blockade of this pathway may have therapeutic implications for HIV-infected patients.  相似文献   

6.
B7-DC regulates asthmatic response by an IFN-gamma-dependent mechanism   总被引:5,自引:0,他引:5  
B7-H1 (PD-L1) and B7-DC (PD-L2) are the ligands for programmed death-1 (PD-1), which is a member of the CD28/CTLA-4 family and has been implicated in peripheral tolerance. We investigated the roles of B7-H1 and B7-DC in a murine OVA-induced allergic asthma model. B7-H1 was constitutively expressed on dendritic cells, macrophages, B cells, and T cells in the lungs of naive mice, and its expression could be dramatically increased after allergen challenge. In contrast, B7-DC expression was scarcely expressed on dendritic cells in naive mice, but was up-regulated after allergen challenge, although the up-regulation of B7-DC expression on macrophages was minimal. Treatment of mice with anti-B7-DC mAb at the time of allergen challenge, but not at the time of sensitization, significantly increased their airway hyper-reactivity and eosinophilia. Such treatment also resulted in the increased production of IL-5 and IL-13, and decreased IFN-gamma production in the lungs and draining lymph node cells. These changes were diminished when mice were depleted of IFN-gamma by anti-IFN-gamma mAb pretreatment. Interestingly, treatment with anti-B7-H1 or anti-PD-1 mAb did not significantly affect the asthmatic response. These results suggest a unique role for B7-DC in the regulation of asthmatic response through an IFN-gamma-dependent, but PD-1-independent, mechanism.  相似文献   

7.
Within the ovarian cancer microenvironment, there are several mechanisms that suppress the actions of antitumor immune effectors. Delineating the complex immune microenvironment is an important goal toward developing effective immune-based therapies. A dominant pathway of immune suppression in ovarian cancer involves tumor-associated and dendritic cell (DC)-associated B7-H1. The interaction of B7-H1 with PD-1 on tumor-infiltrating T cells is a widely cited theory of immune suppression involving B7-H1 in ovarian cancer. Recent studies suggest that the B7-H1 ligand, programmed death receptor-1 (PD-1), is also expressed on myeloid cells, complicating interpretations of how B7-H1 regulates DC function in the tumor. In this study, we found that ovarian cancer-infiltrating DCs progressively expressed increased levels of PD-1 over time in addition to B7-H1. These dual-positive PD-1(+) B7-H1(+) DCs have a classical DC phenotype (i.e., CD11c(+)CD11b(+)CD8(-)), but are immature, suppressive, and respond poorly to danger signals. Accumulation of PD-1(+)B7-H1(+) DCs in the tumor was associated with suppression of T cell activity and decreased infiltrating T cells in advancing tumors. T cell suppressor function of these DCs appeared to be mediated by T cell-associated PD-1. In contrast, ligation of PD-1 expressed on the tumor-associated DCs suppressed NF-κB activation, release of immune regulatory cytokines, and upregulation of costimulatory molecules. PD-1 blockade in mice bearing ovarian cancer substantially reduced tumor burden and increased effector Ag-specific T cell responses. Our results reveal a novel role of tumor infiltrating PD-1(+)B7-H1(+) DCs in mediating immune suppression in ovarian cancer.  相似文献   

8.
The impaired function of CD8(+) T cells is characteristic of hepatitis C virus (HCV) persistent infection. HCV core protein has been reported to inhibit CD8(+) T cell responses. To determine the mechanism of the HCV core in suppressing Ag-specific CD8(+) T cell responses, we generated a transgenic mouse, core(+) mice, where the expression of core protein is directed to the liver using the albumin promoter. Using a recombinant adenovirus to deliver Ag, we demonstrated that core(+) mice failed to clear adenovirus-LacZ (Ad-LacZ) infection in the liver. The effector function of LacZ-specific CD8(+) T cells was particularly impaired in the livers of core(+) mice, with suppression of IFN-gamma, TNF-alpha, and granzyme B production by CD8(+) T cells. In addition, the impaired CD8(+) T cell responses in core(+) mice were accompanied by the enhanced expression of the inhibitory receptor programmed death-1 (PD-1) by LacZ-specific CD8(+) T cells and its ligand B7-H1 on liver dendritic cells following Ad-LacZ infection. Importantly, blockade of the PD-1/B7-H1 inhibitory pathway (using a B7-H1 blocking antibody) in core(+) mice enhanced effector function of CD8(+) T cells and cleared Ad-LacZ-infection as compared with that in mice treated with control Ab. This suggests that the regulation of the PD-1/B7-H1 inhibitory pathway is crucial for HCV core-mediated impaired T cell responses and viral persistence in the liver. This also suggests that manipulation of the PD-1/B7-H1 pathway may be a potential immunotherapy to enhance effector T cell responses during persistent HCV infection.  相似文献   

9.
The programmed death (PD)-1 molecule and its ligands (PD-L1 and PD-L2), negative regulatory members of the B7 family, play an important role in peripheral tolerance. Previous studies have demonstrated that PD-1 is up-regulated on T cells following TCR-mediated activation; however, little is known regarding PD-1 and Ag-independent, cytokine-induced T cell activation. The common gamma-chain (gamma c) cytokines IL-2, IL-7, IL-15, and IL-21, which play an important role in peripheral T cell expansion and survival, were found to up-regulate PD-1 and, with the exception of IL-21, PD-L1 on purified T cells in vitro. This effect was most prominent on memory T cells. Furthermore, these cytokines induced, indirectly, the expression of PD-L1 and PD-L2 on monocytes/macrophages in PBMC. The in vivo correlate of these observations was confirmed on PBMC isolated from HIV-infected individuals receiving IL-2 immunotherapy. Exposure of gamma c cytokine pretreated T cells to PD-1 ligand-IgG had no effect on STAT5 activation, T cell proliferation, or survival driven by gamma c cytokines. However, PD-1 ligand-IgG dramatically inhibited anti-CD3/CD28-driven proliferation and Lck activation. Furthermore, following restimulation with anti-CD3/CD28, cytokine secretion by both gamma c cytokine and anti-CD3/CD28 pretreated T cells was suppressed. These data suggest that gamma c cytokine-induced PD-1 does not interfere with cytokine-driven peripheral T cell expansion/survival, but may act to suppress certain effector functions of cytokine-stimulated cells upon TCR engagement, thereby minimizing immune-mediated damage to the host.  相似文献   

10.
Murine B7-H3 is a negative regulator of T cells   总被引:16,自引:0,他引:16  
T cell activation is regulated by the innate immune system through positive and negative costimulatory molecules. B7-H3 is a novel B7-like molecule with a putative receptor on activated T cells. Human B7-H3 was first described as a positive costimulator, most potently inducing IFN-gamma production and cellular immunity. In this study we examined the expression and function of mouse B7-H3. B7-H3 is mostly expressed on professional APCs; its expression on dendritic cells appears to be up-regulated by LPS. In contrast to human B7-H3, we found that mouse B7-H3 protein inhibited T cell activation and effector cytokine production. An antagonistic mAb to B7-H3 enhanced T cell proliferation in vitro and led to exacerbated experimental autoimmune encephalomyelitis in vivo. Therefore, mouse B7-H3 serves as a negative regulator of T cell activation and function.  相似文献   

11.
Recently, our laboratory reported that secondary CD8+ T cell-mediated antitumor responses were impaired following successful initial antitumor responses using various immunotherapeutic approaches. Although immunotherapy stimulated significant increases in CD8+ T cell numbers, the number of CD4+ T cells remained unchanged. The current investigation revealed a marked differential expansion of CD4+ T cell subsets. Successful immunotherapy surprisingly resulted in an expansion of CD4+Foxp3+ regulatory T (Treg) cells concurrent with a reduction of conventional CD4+ T (Tconv) cells, despite the marked antitumor responses. Following immunotherapy, we observed differential up-regulation of PD-1 on the surface of CD4+Foxp3+ Treg cells and CD4+Foxp3- Tconv cells. Interestingly, it was the ligand for PD-1, B7-H1 (PDL-1), that correlated with Tconv cell loss after treatment. Furthermore, IFN-gamma knockout (IFN-gamma-/-) and IFN-gamma receptor knockout (IFN-gammaR-/-) animals lost up-regulation of surface B7-H1 even though PD-1 expression of Tconv cells was not changed, and this correlated with CD4+ Tconv cell increases. These results suggest that subset-specific expansion may contribute to marked shifts in the composition of the T cell compartment, potentially influencing the effectiveness of some immunotherapeutic approaches that rely on IFN-gamma.  相似文献   

12.
The programmed death-1 (PD-1) costimulatory pathway has been demonstrated to play a role in the regulation of immune responses and peripheral tolerance. We investigated the role of this pathway in establishing an immune privilege status of corneal allografts in mice. B7-H1, but not B7-DC or PD-1, was expressed constitutively in the eye, i.e., cornea, iris-ciliary body, and retina. After corneal allografting, PD-1(+)CD4(+) T cells infiltrated and adhered with B7-H1(+) corneal endothelium. Blockade of PD-1 or B7-H1, but not B7-DC, led to accelerated corneal allograft rejection. In B7-H1-expressing corneal allografts, apoptosis of the infiltrating PD-1(+)CD4(+) or CD8(+) T cells was observed, after which there was allograft acceptance. In contrast, B7-H1 blockade suppressed apoptosis of infiltrating PD-1(+) T cells, which led to allograft rejection. In vitro, destruction of corneal endothelial cells by alloreactive T cells was enhanced when the cornea was pretreated with anti-B7-H1 Ab. This is the first demonstration that the constitutive expression of B7-H1 plays a critical role in corneal allograft survival. B7-H1 expressed on corneal endothelial cells maintains long-term acceptance of the corneal allografts by inducing apoptosis of effector T cells within the cornea.  相似文献   

13.
Viral infection in the airway provokes various immune responses, including Th1 and Th2 responses, which are partly initiated by double-stranded RNA (dsRNA), a viral product for its replication. B7-H1 (PD-L1) and B7-DC (PD-L2) are B7-family molecules that bind to programmed death-1 (PD-1) on lymphocytes and are implicated in peripheral tolerance. We investigated the effect of dsRNA on the expression of B7-H1 and B7-DC on airway epithelial cell lines. B7-H1 and B7-DC were constitutively expressed on the cells, and their expression was profoundly upregulated by stimulation with an analog of viral dsRNA, polyinosinic-polycytidylic acid. B7-H1 and B7-DC were also upregulated by stimulation with IFN-gamma, IL-13, and the supernatant from T cell clones. A relatively high concentration of dexamethasone (1 microM) was required to suppress the upregulation of B7-H1 or B7-DC. These results suggest that epithelial B7-H1 and B7-DC play a role in virus-associated immune responses in the airways.  相似文献   

14.
Programmed death receptor 1 (PD-1) is an important signaling molecule often involved in tumor-mediated suppression of activated immune cells. Binding of this receptor to its ligands, B7-H1 (PD-L1) and B7-DC (PD-L2), attenuates T cell activation, reduces IL-2 and IFN-γ secretion, decreases proliferation and cytotoxicity, and induces apoptosis. B7-DC-Ig is a recombinant protein that binds and targets PD-1. It is composed of an extracellular domain of murine B7-DC fused to the Fc portion of murine IgG2a. In this study, we demonstrate that B7-DC-Ig can enhance the therapeutic efficacy of vaccine when combined with cyclophosphamide. We show that this combination significantly enhances Ag-specific immune responses and leads to complete eradication of established tumors in 60% of mice and that this effect is CD8 dependent. We identified a novel mechanism by which B7-DC-Ig exerts its therapeutic effect that is distinctly different from direct blocking of the PD-L1-PD-1 interaction. In this study, we demonstrate that there are significant differences between levels and timing of surface PD-1 expression on different T cell subsets. We found that these differences play critical roles in anti-tumor immune effect exhibited by B7-DC-Ig through inhibiting proliferation of PD-1(high) CD4 T cells, leading to a significant decrease in the level of these cells, which are enriched for regulatory T cells, within the tumor. In addition, it also leads to a decrease in PD-1(high) CD8 T cells, tipping the balance toward nonexhausted functional PD-1(low) CD8 T cells. We believe that the PD-1 expression level on T cells is a crucial factor that needs to be considered when designing PD-1-targeting immune therapies.  相似文献   

15.
Although dysfunctional dendritic cells contribute to inadequate adaptive immunity in chronic hepatitis B (CHB), underlying molecular mechanisms remain largely undefined. In this study, we examined B7-H1 expression on circulating myeloid dendritic cells (mDCs) in 46 CHB patients, 10 autoimmune hepatitis patients, and 10 healthy subjects as control. We found that B7-H1 expression is significantly up-regulated on circulating mDCs of CHB and autoimmune hepatitis patients compared with healthy individuals. The B7-H1 up-regulation was significantly correlated with an elevation of serum alanine aminotransaminase levels and plasma viral load. In addition, in vitro, both IFN-alpha and IFN-gamma could strongly stimulate mDCs to express B7-H1. More importantly, elevated B7-H1 expression is also closely associated with the suppression of T cell immune function. In vitro blockade of B7-H1 signaling could not only down-regulate IL-10 and up-regulate IL-12 production by mDCs, but also enhance mDC-mediated allostimulatory capacity and cytokine production of T cells. Blockade of B7-H1 signaling could improve hepatitis B c Ag-pulsed monocyte-derived DC-induced IFN-gamma production by autologous hepatitis B virus-specific T cells. These new findings suggested that chronic inflammation may contribute to B7-H1 up-regulation on mDCs in CHB patients, which potentially cause defective hepatitis B virus-specific T cell function and viral persistence. Our findings further support the notion that the blockade of B7-H1 may represent a novel therapeutic approach for this disease.  相似文献   

16.
IL-21, the most recently described member of the common gamma-chain cytokine family, is produced by activated CD4 T cells, whereas CD8 T cells express the IL-21 receptor. To investigate a possible role for IL-21 in the priming of naive CD8 T cells, we examined responses of highly purified naive OT-I CD8 T cells to artificial APCs displaying Ag and B7-1 on their surface. We found that IL-21 enhanced OT-I clonal expansion and supported development of cytotoxic effector function. High levels of IL-2 did not support development of effector functions, but IL-2 was required for optimal responses in the presence of IL-21. IL-12 and IFN-alpha have previously been shown to support naive CD8 T cell differentiation and acquisition of effector functions through a STAT4-dependent mechanism. Here, we show that IL-21 does not require STAT4 to stimulate development of cytolytic activity. Furthermore, IL-21 fails to induce IFN-gamma or IL-4 production and can partially block IL-12 induction of IFN-gamma production. CD8 T cells that differentiate in response to IL-21 have a distinct surface marker expression pattern and are characterized as CD44(high), PD-1(low), CD25(low), CD134(low), and CD137(low). Thus, IL-21 can provide a signal required by naive CD8 T cells to differentiate in response to Ag and costimulation, and the resulting effector cells represent a unique effector phenotype with highly effective cytolytic activity, but deficient capacity to secrete IFN-gamma.  相似文献   

17.
Autoreactive CD4(+) T cells play a major role in the pathogenesis of autoimmune diabetes in nonobese diabetic (NOD) mice. We recently showed that the non-MHC genetic background controlled enhanced entry into the IFN-gamma pathway by NOD vs B6.G7 T cells. In this study, we demonstrate that increased IFN-gamma, decreased IL-4, and decreased IL-10 production in NOD T cells is CD4 T cell intrinsic. NOD CD4(+) T cells purified and stimulated with anti-CD3/anti-CD28 Abs generated greater IFN-gamma, less IL-4, and less IL-10 than B6.G7 CD4(+) T cells. The same results were obtained in purified NOD.H2(b) vs B6 CD4(+) T cells, demonstrating that the non-MHC NOD genetic background controlled the cytokine phenotype. Moreover, the increased IFN-gamma:IL-4 cytokine ratio was independent of the genetic background of APCs, since NOD CD4(+) T cells generated increased IFN-gamma and decreased IL-4 compared with B6.G7 CD4(+) T cells, regardless of whether they were stimulated with NOD or B6.G7 APCs. Cell cycle analysis showed that the cytokine differences were not due to cycle/proliferative differences between NOD and B6.G7, since stimulated CD4(+) T cells from both strains showed quantitatively identical entry into subsequent cell divisions (shown by CFSE staining), although NOD cells showed greater numbers of IFN-gamma-positive cells with each subsequent cell division. Moreover, 7-aminoactinomycin D and 5-bromo-2'-deoxyuridine analysis showed indistinguishable entry into G(0)/G(1), S, and G(2)/M phases of the cell cycle for both NOD and B6.G7 CD4(+) cells, with both strains generating IFN-gamma predominantly in the S phase. Therefore, the NOD cytokine effector phenotype is CD4(+) T cell intrinsic, genetically controlled, and independent of cell cycle machinery.  相似文献   

18.
19.
Costimulation via the PD-1 and B7-H1/B7-DC pathway regulates immunity. We investigated whether the PD-1/PD-L pathway is impaired in autoimmune diabetes. A progressive increase in the expression of PD-1 and B7-H1/B7-DC on T cells and APC, respectively, was observed in the pancreatic lymph nodes of female non-obese diabetic (NOD) mice as they developed diabetes. A significantly decreased expression of PD-1 and B7-H1/B7-DC on T cells and APC, respectively, was observed in the periphery of prediabetic NOD mice versus non-diabetic C57BL/6 strain. NOD islets also displayed a reduced capacity to upregulate B7-H1 following exposure to inflammatory cytokines. In vivo blocking studies in NOD/B7-2KONOD mice revealed that B7-H1 and B7-DC positively costimulate autoreactive CD4 and CD8 T cells and may co-operate with B7-2 to augment priming and expansion of naïve autoreactive T cells. In summary, these data suggest that diabetes susceptibility in NOD mice is associated with altered PD-1/PD-L availability.  相似文献   

20.
The inducible costimulatory (ICOS) molecule is expressed by activated T cells and has homology to CD28 and CD152. ICOS binds B7h, a molecule expressed by APC with homology to CD80 and CD86. To investigate regulation of ICOS expression and its role in Th responses we developed anti-mouse ICOS mAbs and ICOS-Ig fusion protein. Little ICOS is expressed by freshly isolated mouse T cells, but ICOS is rapidly up-regulated on most CD4(+) and CD8(+) T cells following stimulation of the TCR. Strikingly, ICOS up-regulation is significantly reduced in the absence of CD80 and CD86 and can be restored by CD28 stimulation, suggesting that CD28-CD80/CD86 interactions may optimize ICOS expression. Interestingly, TCR-transgenic T cells differentiated into Th2 expressed significantly more ICOS than cells differentiated into Th1. We used two methods to investigate the role of ICOS in activation of CD4(+) T cells. First, CD4(+) cells were stimulated with beads coated with anti-CD3 and either B7h-Ig fusion protein or control Ig fusion protein. ICOS stimulation enhanced proliferation of CD4(+) cells and production of IFN-gamma, IL-4, and IL-10, but not IL-2. Second, TCR-transgenic CD4(+) T cells were stimulated with peptide and APC in the presence of ICOS-Ig or control Ig. When the ICOS:B7h interaction was blocked by ICOS-Ig, CD4(+) T cells produced more IFN-gamma and less IL-4 and IL-10 than CD4(+) cells differentiated with control Ig. These results demonstrate that ICOS stimulation is important in T cell activation and that ICOS may have a particularly important role in development of Th2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号