首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Verdun RE  Karlseder J 《Cell》2006,127(4):709-720
Telomeres protect chromosome ends from being detected as lesions and from triggering DNA damage checkpoints. Paradoxically, telomere function depends on checkpoint proteins such as ATM and ATR, but a molecular model explaining this seemingly contradictory relationship has been missing so far. Here we show that the DNA damage machinery acts on telomeres in at least two independent steps. First, the ATR-dependent machinery is recruited to telomeres before telomere replication is completed, likely in response to single-stranded DNA resulting from replication fork stalling. Second, after replication, telomeres attract ATM and the homologous recombination (HR) machinery. In vivo and in vitro results suggest that the HR machinery is required for formation of a telomere-specific structure at chromosome ends after replication. Our results suggest that telomere ends need to be recognized as DNA damage to complete end replication and to acquire a structure that is essential for function.  相似文献   

2.
Replication at the telomeres of the Streptomyces linear plasmid pSLA2   总被引:13,自引:6,他引:7  
The Streptomyces linear plasmid pSLA2 initiates DNA replication bidirectionally towards its telomeres from a site located near the centre of the molecule; at the telomeres, the recessed ends of lagging strands are filled in by non-displacing DNA synthesis. Here, we report experiments that test three proposed mechanisms for lagging-strand fill-in. We present data inconsistent with recombinational or terminal hairpin models for the formation of full-length duplex pSLA2 DNA. Instead, we find that deletions in short, distantly separated homologous palindromes in the leading-strand 3' overhang prevent propagation of linear pSLA2 DNA, implicating a mechanism of palindrome-mediated leading-strand fold-back in telomere replication. We further show that circularized pSLA2 DNA molecules are opened in vivo precisely at the terminal nucleotides of telomeres, generating functional linear replicons containing native telomeres covalently bound to a protein at their 5' DNA termini. Together, our results support a model in which pairing of multiple widely separated pSLA2 palindromes anchors the 3' end of the leading-strand overhang to a site near the overhang's base — providing a recognition site for terminal-protein-primed DNA synthesis and subsequent endonucleolytic processing. Thus, the replication of Streptomyces plasmid telomeres may have features in common with the mechanism proposed for telomere replication in autonomous parvoviruses.  相似文献   

3.
The genus Borrelia includes the causative agents of Lyme disease and relapsing fever. An unusual feature of these bacteria is a genome that includes linear DNA molecules with covalently closed hairpin ends referred to as telomeres. We have investigated the mechanism by which the hairpin telomeres are processed during replication. A synthetic 140 bp sequence having the predicted structure of a replicated telomere was shown to function as a viable substrate for telomere resolution in vivo, and was sufficient to convert a circular replicon to a linear form. Our results suggest that the final step in the replication of linear Borrelia replicons is a site-specific DNA breakage and reunion event to regenerate covalently closed hairpin ends. The telomere substrate described here will be valuable both for in vivo manipulation of linear DNA in Borrelia and for in vitro studies to identify and characterize the telomere resolvase.  相似文献   

4.
5.
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularizes via cohensive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). Purified protelomerase alone processes circular and linear plasmid DNA containing the target site telRL to produce linear double-stranded DNA with covalently closed ends in vitro. N15 protelomerase is necessary for replication of the linear prophage through its action as a telomere-resolving enzyme. Replication of circular N15-based miniplasmids requires the only gene repA that encodes multidomain protein homologous to replication proteins of bacterial plasmids replicated by theta-mechanism, particularly, phage P4 alpha-replication protein. Replication of the N15 prophage is initiated at an internal ori site located within repA. Bidirectional replication results in formation of the circular head-to-head, tail-to-tail dimer molecule. Then the N15 protelomerase cuts both duplicated telomeres generating two linear plasmid molecules with covalently closed ends. The N15 prophage replication thus appears to follow the mechanism distinct from that employed by poxviruses and could serve as a model for other prokaryotic replicons with hairpin ends, and particularly, for linear plasmids and chromosomes of Borrelia burgdorferi.  相似文献   

6.
F L Graham  J Rudy    P Brinkley 《The EMBO journal》1989,8(7):2077-2085
A series of plasmids containing the entire human adenovirus genome with viral DNA termini joined 'head to tail' has been isolated. Several plasmids were able to generate infectious virus following transfection of human cells in spite of having small deletions and rearrangements at the junctions of termini. One plasmid has lost 2 bp of DNA from one end of the viral genome and 11 bp from the other end yet produced viruses with complete wild-type sequences at both ends of the genome. We propose a model for replication of viral DNA off circular templates in which regeneration of terminal information involves translocation of primer and polymerase during initiation of DNA replication. The model suggests a novel mechanism for extension of the 5' ends of linear DNA molecules which could be applicable to chromosomal telomeres.  相似文献   

7.
The prophage of coliphage N15 is not integrated into the chromosome but exists as a linear plasmid molecule with covalently closed hairpin ends (telomeres). Upon infection the injected phage DNA circularizes via its cohesive ends. Then, a phage-encoded enzyme, protelomerase, cuts the circle and forms the hairpin telomeres. N15 protelomerase acts as a telomere-resolving enzyme during prophage DNA replication. We characterized the N15 replicon and found that replication of circular N15 miniplasmids requires only the repA gene, which encodes a multidomain protein homologous to replication proteins of bacterial plasmids replicated by a theta-mechanism. Replication of a linear N15 miniplasmid also requires the protelomerase gene and telomere regions. N15 prophage replication is initiated at an internal ori site located within repA and proceeds bidirectionally. Electron microscopy data suggest that after duplication of the left telomere, protelomerase cuts this site generating Y-shaped molecules. Full replication of the molecule and subsequent resolution of the right telomere then results in two linear plasmid molecules. N15 prophage replication thus appears to follow a mechanism that is distinct from that employed by eukaryotic replicons with this type of telomere and suggests the possibility of evolutionarily independent appearances of prokaryotic and eukaryotic replicons with covalently closed telomeres.  相似文献   

8.
Hug N  Lingner J 《Chromosoma》2006,115(6):413-425
  相似文献   

9.
In Saccharomyces cerevisiae, telomere replication occurs in late S phase and is accompanied by dynamic remodeling of its protein components. Here, we show that MRX (Mre11-Rad50-Xrs2), an evolutionarily conserved protein complex involved in DNA double-strand break (DSB) repair, is recruited to the telomeres in late S phase. MRX is required for the late S phase-specific recruitment of ATR-like kinase Mec1 to the telomeres. Mec1, in turn, contributes to the assembly of the telomerase regulators Cdc13 and Est1 at the telomere ends. Our results provide a model for the hierarchical assembly of telomere-replication proteins in late S phase; this involves triggering by the loading of MRX onto the chromosome termini. The recruitment of DNA repair-related proteins to the telomeres at particular times in the cell cycle suggests that the normal terminus of a chromosome is recognized as a DSB during the course of replication.  相似文献   

10.
端粒位于真核细胞线性染色体末端,正常的端粒长度与结构对于细胞基因组稳定的维持有重要作用.端粒DNA序列的高度重复性使其容易形成一些特殊的二级结构,相比染色体其他位置更难复制.结合在端粒上的Shelterin蛋白复合体由六个端粒结合蛋白组成,该复合体可以通过抑制端粒处异常DNA损伤修复途径的激活维持端粒的稳定.此外,近几...  相似文献   

11.
Telomere structure allows cells to distinguish the natural chromosome ends from double-strand breaks (DSBs). However, DNA damage response proteins are intimately involved in telomere metabolism, suggesting that functional telomeres may be recognized as DNA damage during a time window. Here we show by two different systems that short telomeres are recognized as DSBs during the time of their replication, because they induce a transient MRX-dependent DNA damage checkpoint response during their prolonged elongation. The MRX complex, which is recruited at telomeres under these conditions, dissociates from telomeres concomitantly with checkpoint switch off when telomeres reach a new equilibrium length. We also show that MRX recruitment to telomeres is sufficient to activate the checkpoint independently of telomere elongation. We propose that MRX can signal checkpoint activation by binding to short telomeres only when they become competent for elongation. Because full-length telomeres are refractory to MRX binding and the shortest telomeres are elongated of only a few base pairs per generation, this limitation may prevent unscheduled checkpoint activation during an unperturbed S phase.  相似文献   

12.
真核生物的DNA损伤检控系统是维持细胞基因组稳定的一个重要机制,该系统能检测细胞在生命活动过程中出现的DNA损伤并引发细胞周期阻滞,对DNA损伤进行修复,以维持细胞遗传的稳定性。端粒是位于真核细胞染色体末端由重复DNA序列和蛋白质组成的复合物,具有保护染色体、介导染色体复制、引导减数分裂时的同源染色体配对和调节细胞衰老等作用。虽然端粒与DNA双链断裂都具有作为线性染色体末端的共同特点,但正常端粒并不像DNA双链断裂那样激活DNA损伤检控系统。另一方面,端粒又与DNA损伤相似,因为多种DNA损伤检控蛋白在端粒长度稳定中起重要作用。因此DNA损伤检控系统既参与了维持正常端粒的完整性,又可对端粒损伤作出应答。现就DNA损伤检控系统在维持端粒稳定中的作用及其对功能缺陷端粒的应答作一简要综述。  相似文献   

13.
The termini of linear chromosomes are protected by specialized DNA structures known as telomeres that also facilitate the complete replication of DNA ends. The simplest type of telomere is a covalently closed DNA hairpin structure found in linear chromosomes of prokaryotes and viruses. Bidirectional replication of a chromosome with hairpin telomeres produces a catenated circular dimer that is subsequently resolved into unit-length chromosomes by a dedicated DNA cleavage-rejoining enzyme known as a hairpin telomere resolvase (protelomerase). Here we report a crystal structure of the protelomerase TelK from Klebsiella oxytoca phage varphiKO2, in complex with the palindromic target DNA. The structure shows the TelK dimer destabilizes base pairing interactions to promote the refolding of cleaved DNA ends into two hairpin ends. We propose that the hairpinning reaction is made effectively irreversible by a unique protein-induced distortion of the DNA substrate that prevents religation of the cleaved DNA substrate.  相似文献   

14.
15.
Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomeric DNA comprises terminal tracts of G-rich tandem repeats, which are inherently difficult for the replication machinery to navigate. Structural aberrations that promote activation of the alternative lengthening of telomeres (ALT) pathway of telomere maintenance exacerbate replication stress at ALT telomeres, driving fork stalling and fork collapse. This form of telomeric DNA damage perpetuates recombination-mediated repair pathways and break-induced telomere synthesis. The relationship between replication stress and DNA repair is tightly coordinated for the purpose of regulating telomere length in ALT cells, but has been shown to be experimentally manipulatable. This raises the intriguing possibility that induction of replication stress can be used as a means to cause toxic levels of DNA damage at ALT telomeres, thereby selectively disrupting the viability of ALT cancers.  相似文献   

16.
Variation in the topology of mitochondrial DNA (mtDNA) in eukaryotes evokes the question if differently structured DNAs are replicated by a common mechanism. RNA-primed DNA synthesis has been established as a mechanism for replicating the circular animal/mammalian mtDNA. In yeasts, circular mtDNA molecules were assumed to be templates for rolling circle DNA-replication. We recently showed that in Candida albicans, which has circular mapping mtDNA, recombination driven replication is a major mechanism for replicating a complex branched mtDNA network. Careful analyses of C. albicans-mtDNA did not reveal detectable amounts of circular DNA molecules. In the present study we addressed the question of how the unit sized linear mtDNA of Candida parapsilosis terminating at both ends with arrays of tandem repeats (mitochondrial telomeres) is replicated. Originally, we expected to find replication intermediates diagnostic of canonical bi-directional replication initiation at the centrally located bi-directional promoter region. However, we found that the linear mtDNA of Candida parapsilosis also employs recombination for replication initiation. The most striking findings were that the mitochondrial telomeres appear to be hot spots for recombination driven replication, and that stable RNA:DNA hybrids, with a potential role in mtDNA replication, are also present in the mtDNA preparations.  相似文献   

17.
Telomere loss: mitotic clock or genetic time bomb?   总被引:38,自引:0,他引:38  
C B Harley 《Mutation research》1991,256(2-6):271-282
The Holy Grail of gerontologists investigating cellular senescence is the mechanism responsible for the finite proliferative capacity of somatic cells. In 1973, Olovnikov proposed that cells lose a small amount of DNA following each round of replication due to the inability of DNA polymerase to fully replicate chromosome ends (telomeres) and that eventually a critical deletion causes cell death. Recent observations showing that telomeres of human somatic cells act as a mitotic clock, shortening with age both in vitro and in vivo in a replication dependent manner, support this theory's premise. In addition, since telomeres stabilize chromosome ends against recombination, their loss could explain the increased frequency of dicentric chromosomes observed in late passage (senescent) fibroblasts and provide a checkpoint for regulated cell cycle exit. Sperm telomeres are longer than somatic telomeres and are maintained with age, suggesting that germ line cells may express telomerase, the ribonucleoprotein enzyme known to maintain telomere length in immortal unicellular eukaryotes. As predicted, telomerase activity has been found in immortal, transformed human cells and tumour cell lines, but not in normal somatic cells. Telomerase activation may be a late, obligate event in immortalization since many transformed cells and tumour tissues have critically short telomeres. Thus, telomere length and telomerase activity appear to be markers of the replicative history and proliferative potential of cells; the intriguing possibility remains that telomere loss is a genetic time bomb and hence causally involved in cell senescence and immortalization.  相似文献   

18.
Chromosome ends in Saccharomyces cerevisiae are positioned in clusters at the nuclear rim. We report that Ctf18, Ctf8, and Dcc1, the subunits of a Replication Factor C (RFC)-like complex, are essential for the perinuclear positioning of telomeres. In both yeast and mammalian cells, peripheral nuclear positioning of chromatin during G1 phase correlates with late DNA replication. We find that the mislocalized telomeres of ctf18 cells still replicate late, showing that late DNA replication does not require peripheral positioning during G1. The Ku and Sir complexes have been shown to act through separate pathways to position telomeres, but in the absence of Ctf18 neither pathway can act fully to maintain telomere position. Surprisingly CTF18 is not required for Ku or Sir4-mediated peripheral tethering of a nontelomeric chromosome locus. Our results suggest that the Ctf18 RFC-like complex modifies telomeric chromatin to make it competent for normal localization to the nuclear periphery.  相似文献   

19.
20.
Early studies of telomerase suggested that telomeres are maintained by an elegant but relatively simple and highly conserved mechanism of telomerase-mediated replication. As we learn more, it has become clear that the mechanism is elegant but not as simple as first thought. It is also evident that, although many species use similar, sometimes identical, DNA sequences for telomeres, these species express their own individuality in the way they regulate these sequences and, perhaps, in the additional tasks that they have imposed on their telomeric DNA. The striking similarities between telomeres in different species have revealed much about chromosome ends; the differences are proving to be equally informative. In addition to the differences between species that use telomerase, there are also a few exceptional organisms with atypical telomeres for which no telomerase activity has been detected. This review addresses recent studies, the insights they offer, and, perhaps more importantly, the questions they raise. Received: 14 January 1999 / Accepted: 15 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号