首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitosan, a polysaccharide, having structural characteristics similar to glycosaminoglycans, seems to be nontoxic and bioabsorbable. This study highlights the use of chitosan matrix for controlled drug delivery systems. The steroid drugs, namely testosterone, progesterone and beta-oestradiol were mixed with chitosan and the films were prepared by evaporation technique. The in vitro release profile of these steroids from the film matrix was monitored, as a function of time, in phosphate buffered saline (PBS, pH 7.4) at 37 degree C using a U-V-spectrophotometer. The degradation, of these chitosan and drug loaded chitosan films, was also investigated by weight loss and tensile strength studies. The steroid release from chitosan films was compared with the release of these drugs from their microbeads. It appears, the films and the microbeads stayed intact during the dissolution study of 90 days and the possibility of using these systems in contraceptive applications and novel drug delivery systems are discussed.  相似文献   

2.
3.
Glutaraldehyde cross-linked chitosan microspheres were prepared for controlled release of centchroman, a nonsteroidal contraceptive. The cross-linked microspheres with low-molecular-weight (LMW) chitosan (260 kg mol(-1)) have shown maximum degree of swelling (287 wt%) but were found to be poor in loading and release behavior for centchroman. The microspheres with medium-molecular-weight (MMW) chitosan (1134 kg mol(-1)) have shown 250 wt% degree of swelling and 37.5 wt% loading of centchroman, but microspheres with high-molecular-weight (HMW) chitosan (2224 kg mol(-1)) have shown a low degree of swelling (150 wt%) and centchroman loading (30 wt%). The microspheres with MMW chitosan have released 82 wt% of loaded centchroman in a controlled release manner within a period of 70 h in comparison to low- (260 kg mol(-1)) and high-MW (2224 kg mol(-1)) chitosan microspheres. The chitosan microspheres with 62 wt% degree of deacetylation (DDA) were more efficient in the controlled release of centchroman in comparison to chitosan microspheres with low (48 wt%) and high-DDA (75 wt%). The fractional release of centchroman (M(t)/M(infinity)) from chitosan microspheres was used to predict the mechanism of drug release and to determine the diffusion constant (D) of centchroman.  相似文献   

4.
5.
6.
Chitosan fibers showing narrow diameter distribution with a mean of 42 nm were produced by electrospinning and utilized for the sorption of Fe(III), Cu(II), Ag(I), and Cd(II) ions from aqueous solutions. The ion concentrations in the supernatant solutions were determined using inductively coupled plasma-mass spectrometry (ICP-MS). The filtration efficiency of the fibers toward these ions was studied by both batch and microcolumn methods. High efficiency in sorption of the metal ions was obtained in the both methods. The effects of sorbent amount (0.10-0.50 mg), shaking time (15-120 min), initial metal ion concentration (10.0-1000.0 μg·L(-1)), and temperature (25 and 50 °C) on the extent of sorption were examined. The sorbent amount did not significantly alter the efficiency of sorption; however, shaking time, temperature, and metal ion concentration were found to have a strong influence on sorption. By virtue of its mechanical integrity, the applicability of the chitosan mat in solid phase extraction under continuous flow looks promising.  相似文献   

7.
The aim of this study was to prepare and select chitosan nanoparticles loaded metal ions with high antibacterial activities. Chitosan nanoparticles were prepared based on ionic gelation between chitosan and sodium tripolyphosphate. Then, Ag+, Cu2+, Zn2+, Mn2+, or Fe2+ was individually loaded onto chitosan nanoparticles. Their particle sizes and zeta potentials were measured. Their antibacterial activities were evaluated by determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli 25922, Salmonella choleraesuis ATCC 50020 and Staphylococcus aureus 25923 in vitro. Results showed that antibacterial activity was significantly enhanced by the metal ions loaded, except for Fe2+. Especially for chitosan nanoparticles loaded Cu2+, the MIC and MBC against E. coli 25922, S.choleraesuis ATCC 50020 and S. aureus 25923 were 21–42 times lower than that of Cu2+, respectively. Moreover, it was found that antibacterial activity was directly proportional to zeta potential.  相似文献   

8.
9.
Abstract

Uptake of metals by whole Eichhornia crassipes plants and excised roots was studied using a bioassay system. Results indicate that in time-series bioassay at concentration of 10 mg L?1 of either Zn or Cu, rapid uptake by whole plants occurred during the first 4 h, but subsequently levelled off after 48 h. A greater proportion of metals absorbed remain in the root system rather than being translocated to other parts of plant. When treated with different combinations of both Cu and Zn, some synergistic effect of metals appeared to have occurred as indicated by enhanced uptake when bioassays involved combination of metals. Absorption kinetics of monovalent K+ by excised Eichhornia roots after a 24-h treatment, indicated an initial linear trend over the range of 1–10 mg K L?1, but subsequently levelled off at 15 mg K L?1 concentration with Vmax of 7.5 × 10–6 M K g?1 dry tissue h?1 and Km of 1.1 × 10?3 M K. Potentiometric titrations revealed existence of pH-dependent charge densities on root system which have variable affinities for cations and helps explain the ability of Eichhornia roots to absorb and accumulate large amounts of metal ions especially at high pH of media.  相似文献   

10.
Frog sartorius muscles were pretreated in 11.6 M (87%) ion-free glycerol. Then half of them were put in 5.8 M glycerol solutions containing 55 mM LiCl, NaCl, RbCl or CsCl and their pairs in ion-free 5.8 M glycerol solutions at 1:40 Vol. muscle:Vol. solution ratio. The release of potassium during exposure to the 5.8 M glycerol solution was significantly faster in the presence of Li or Na, but significantly slower in the presence of Rb than in the ion-free circumstance. The effect of Rb can be related to a cooperative phenomenon that implies existence of a structured phase of K-protein complexes. Some postulates of Ling's association-induction hypothesis are used for interpretation of two phases and their phase transitions in this type of bound-K structure in muscle. The phase transitions in this system could have an important role in the fast processes of excitation in muscle.  相似文献   

11.
Temperature and pH-responsive hydrogels based on chitosan grafted with poly acrylic acid (PAAc), poly hydroxy propyl methacrylate (PHPMA), poly (vinyl alcohol) (PVA) and gelatin were prepared for controlled drug delivery. These stimuli-responsive hydrogels were synthesized by gamma irradiation technique. The degree of gelation was over 90% and increased as chitosan, AAc and PVA content increased, while the degree of gelation decrease with the increase of gelatin content. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of 2–9 was investigated. An increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 9. Also antibiotic drug Oxttetracycline was loaded into the hydrogels and the release studies were carried out at different pH and temperature. The in vitro release profiles of the drug showed that, the release of the drug increased as the time, temperature and pH increased and reached to maximum after 48 h at pH 9. The prepared hydrogels were characterized by using SEM, FTIR, and DSC.  相似文献   

12.
The fungitoxicity of metal ions   总被引:3,自引:0,他引:3  
  相似文献   

13.
Most nucleases rely on divalent cations as cofactors to catalyze the hydrolysis of nucleic acid phosphodiester bonds. Here both equilibrium and kinetic experiments are used to test recently proposed models regarding the metal ion dependence of product release and the degree of cooperativity between metal ions bound in the active sites of the homodimeric PvuII endonuclease. Equilibrium fluorescence anisotropy studies indicate that product binding is dramatically weakened in the presence of metal ions. Pre-steady state kinetics indicate that product release is at least partially rate limiting. Steady state and pre-steady state data fit best to models in which metals remain bound to the enzyme after the release of product. Finally, analysis of cooperative and independent binding models for metal ions indicates that single turnover kinetic data are consistent with little to no positive cooperativity between the two metal ions binding each active site.  相似文献   

14.
15.
The following formation constants have been determine for nalidixic acid: proton, copper(II) complexation, magnesium(II) complexation, guanosine-5′-monophosphate-copper(II) complexation. Use of these data (together with the corresponding published constants of calcium(II), iron(II), manganese(II) and zinc(II) supports the hypothesis that the drug acts at a site other than extracellular. Complex formation between nalidixic acid, metal ion and DNA (at guanosine residues) is suggested.  相似文献   

16.
17.
In the present study, spherical beads were prepared from a water-soluble chitosan (N,O-carboxymethyl chitosan, NOCC) and alginate with ionic gelation method. Then, swollen calcium–alginate–NOCC beads were coated with chitosan. To prepare drug loaded beads, sulfasalazine (SA) was added to the initial aqueous polymer solution. The effect of coating, as well as drying procedure, on the swelling behavior of unloaded beads and SA release of drug loaded ones were evaluated in simulated gastrointestinal tract fluid. The rate of swelling and drug release were decreased for air-dried and coated beads in comparison with freeze-dried and uncoated ones, respectively. No burst release of drug was observed from whole tested beads. Chitosan coated beads released approximately 40% of encapsulated drug in simulated gastric and small intestine tract fluid. Based on these results, the chitosan coated alginate–NOCC hydrogel may be used as potential polymeric carrier for colon-specific delivery of sulfasalazine.  相似文献   

18.
Transphosphorylations catalysed by bivalent metal ions   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

19.
The polyelectrolyte complex (PEC) hydrogel beads based on chitosan (CS) and carrageenan (CR) have been studied as a controlled release device to deliver sodium diclofenac (DFNa) in the simulated gastrointestinal condition. Various factors potentially influencing the drug release (ie, CS/CR proportion, DFNa content, types and amount of cross-linking agents) were also investigated. The optimal formulation was obtained with CS/CR proportion of 2/1 and 5% (wt/vol) DFNa. The controlled release of the drug from this formulation was superior to other formulations and was able to maintain the release for approximately 8 hours. Upon cross-linking with glutaric acid and glutaraldehyde, the resulting beads were found to be more efficient for prolonged drug release than their non-cross-linking counterparts. The bead cross-linked with glutaraldehyde was able to control the release of the drug over 24 hours. The difference in the drug release behavior can be attributed to the differences in ionic interaction between the oppositely charged ions and to the concentrations of the drug within the beads, which depends on the compositions of the formulation and the pH of the dissolution medium. The release of drug was controlled by the mechanism of the dissolution of DFNa in the dissolution medium and the diffusion of DFNa through the hydrogel beads.  相似文献   

20.
Interpenetrating polymer network (IPN) microspheres of chitosan (CS) and methylcellulose (MC) were prepared by emulsion-crosslinking in the presence of glutaraldehyde (GA) as a crosslinker. Theophylline (THP), an antiasthmatic drug was encapsulated into IPN microspheres under varying ratios of MC and CS, % drug loading and amount of GA added. IPNs have shown better mechanical properties than pure CS. Cross-link density of the matrices was significantly affected by the amount of GA and MC. Microspheres were characterized by Fourier transform infrared (FTIR) spectroscopy to assess the formation of IPN structure and to confirm the absence of chemical interactions between drug, polymer and crosslinking agent. Particle size was measured by laser light scattering technique. Microspheres with the average particle sizes ranging from 119 to 318 μm were produced. Differential scanning calorimetry (DSC) and X-ray diffraction (X-RD) studies were performed to understand the crystalline nature of drug after encapsulation into IPN microspheres. Theophylline encapsulation of up to 82% was achieved as measured by UV spectrometer. Equilibrium swelling was performed in distilled water. In vitro release studies were performed in both 0.1 N HCl and pH 7.4 buffer solutions. These data indicated a dependence of drug release on the extent of crosslinking and amount of MC added during the preparation of microspheres. The release was extended up to 12 h and release rates were fitted to an empirical equation to compute the diffusional parameters, which indicated a slight deviation from the Fickian trend for the release of theophylline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号